Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.

Slides:



Advertisements
Similar presentations
Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
Advertisements

GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
Summary of wg2a (BDS and IR) Deepa Angal-Kalinin, Shigeru Kuroda, Andrei Seryi October 21, 2005.
Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
27 June 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit ILC BDS 27 June 06.
Backgrounds and Forward Region Backgrounds and Forward Region FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beam Monitoring from Beam Strahlung work by summer students  Gunnar Klämke (U Jena, 01)  Marko Ternick (TU Cottbus, 02)  Magdalena Luz (HU Berlin, 03)
ILC Meeting Vancouver July What Does Beam-strahlung Tell Us? William Morse - BNL.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1.
Isabell-A. Melzer-Pellmann ILC-tech meeting, Status report of offset and angle studies with Guinea-Pig Status report of offset and angle studies.
19 July 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit (via Eric Torrence) VLCW06 19 July 06.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
Beam-Beam Background and the Forward Region at a CLIC Detector André Sailer (CERN PH-LCD) LC Physics School, Ambleside 22st August, 2009.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
Inputs from GG6 to decisions 2,7,8,15,21,27,34 V.Telnov Aug.24, 2005, Snowmass.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
W. Morse GamCal1 GamCal: a Beam-strahlung Gamma Detector for Beam Diagnostics William M. Morse Brookhaven National Lab.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Beam-Beam interaction SIMulation: GUINEA-PIG C. Rimbault, LAL Orsay CARE 05, Geneva, November 2005.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
Mokka simulation studies on the Very Forward Detector components at CLIC and ILC Eliza TEODORESCU (IFIN-HH) FCAL Collaboration Meeting Tel Aviv, October.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
MAIN DUMP LINE: BEAM LOSS SIMULATIONS WITH THE TDR PARAMETERS Y. Nosochkov E. Marin, G. White (SLAC) LCWS14 Workshop, Belgrade, October 7, 2014.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
BDIR/MDI Summary ECFA Final Plenary
BeamCal Simulation for CLIC
Summary of the FCAL Workshop Cracow, February 12-13
BDIR/MDI Summary ECFA Final Plenary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Other beam-induced background at the IP
Optimization of the Luminosity using Beamstrahlung Photons
Beamdiagnostics by Beamstrahlung Pair Analysis
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
Calorimeters of the Very Forward Region
The Very Forward Region of the ILC Detectors
Beam-Beam Effects in High-Energy Colliders:
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006

09-Nov-2006C.Grah: Beamdiagnostics2 Content  Overview –Geometries and Parameter Sets  Beamstrahlung Pair Analysis  Results of Pair Analysis –Comparison between 2mrad, and 14mrad for different magnetic field configurations  Look on the Geant4 Simulation BeCaS and first results (A.Sapronov)  Look on potential of combined photon/pair analysis

09-Nov-2006C.Grah: Beamdiagnostics3 The New Baseline – 14mrad  The new baseline configuration is: –two IR‘s with 14mrad crossing angle  We should be prepared for both magnetic field configurations: DID and Anti- DID  Found that the LumiCal aperture for 20mrad should be increased (to ~120mm).  For now we keep the aperture of 100mm for 14mrad. Origin of backscattered particles for 20mrad Anti-DID. (A.Vogel) 14mrad 100 BX

09-Nov-2006C.Grah: Beamdiagnostics4 Beamstrahlung Pair Analysis  e+e- pairs from beamstrahlung are deflected into the BeamCal  e + e - per BX => 10 – 20 TeV  ~ 10 MGy per year => radiation hard sensors  The spectra and spatial distribution contain information about the initial collision. Production of incoherent e + e - pairs e-e- e+e+ e-e- e-e- γ Creation of beamstrahlung (N phot ~ O(1) per bunch particle δ BS ~ O(1%) energy loss)

09-Nov-2006C.Grah: Beamdiagnostics5 Under Discussion – LowP Parameter Set  Also under discussion: ½ RF power  IF we want to achieve the same luminosity the beam parameters will be quite aggressive –N bunch = 2880 => 1330 –ε y = 40 => 35 x m rad –σ x = 655=> 452 nm –σ y = 5.7=> 3.8 nm –σ z = 300=> 200 μm –δ BS = 2.2=> 5.7 % Energy from pairs in BeamCal per BX

09-Nov-2006C.Grah: Beamdiagnostics6 Pair Distributions for 14mrad DID Anti DID LowP Nominal Larger blind area compared to 20 mrad (30° => 40°)

09-Nov-2006C.Grah: Beamdiagnostics7 Moore Penrose Method Observables Δ BeamPar Taylor Matrix nom = + *  Observables (examples): – total energy – first radial moment – thrust value – angular spread – E(ring ≥ 4) / Etot – r-φ observables T1, T2 – E / N – l/r, u/d, f/b asymmetries detector: realistic segmentation, ideal resolution, bunch by bunch resolution

09-Nov-2006C.Grah: Beamdiagnostics8 1 st order Taylor Matrix beam parameter i [au] observable j [au] parametrization (polynomial) 1 point = 1 bunch crossing by guinea-pig slope at nom. value  taylor coefficient i,j

09-Nov-2006C.Grah: Beamdiagnostics9 Beam Parameter Reconstruction 2mrad14mrad DID 14mrad antiDID ParameterUnitNom.μσμσμσ σxσx nm σyσy nm σzσz μmμm εxεx m rad εyεy m rad ΔxΔxnm ΔyΔynm waistxμmμm waistyμmμm N bunch part Single parameter reconstruction

09-Nov-2006C.Grah: Beamdiagnostics10 Beam Parameter Reconstruction Beamparameters vs Observables slopes (significance) normalized to sigmas 14mrad DID 2mrad

09-Nov-2006C.Grah: Beamdiagnostics11 Observables(r-φ)  Tauchi & Yokoya, Phys Rev E51, (1995) 6119 Define 2 x 2 regions with: high energy deposition low energy deposition T1 = (Low1 + Low2)/(High1+High2) T2= High1/High2 Has to be redefined for each geometry/magnetic field. Optimum not found yet.

09-Nov-2006C.Grah: Beamdiagnostics12 Concept of the Beamstrahlung Pair Analysis Simulate Collision with Guineapig 1.) nominal parameter set 2.) with variation of a specific beam parameter (e.g. σ x, σ y, σ z, Δσ x, Δσ y, Δσ z ) G.White: 2 nd order dependencies Produce photon/pair output ASCII File Extrapolate pairs to BeamCal front face and determine energy deposition (geometry and magnetic field dependent) Run full GEANT4 simulation BeCaS and calculate energy deposition per cell (geometry and magnetic field dependent) Calculate Observables and write summary file Calculate Observables and write summary file Do the parameter reconstruction using 1.) linear approximation (Moore Penrose Inversion Method) 2.) using fits to describe non linear dependencies A.Stahl: beammon.f A.Sapronov: BeCaS1.0 LC-DET Diagnostics of Colliding Bunches from Pair Production and Beam Strahlung at the IP Achim Stahl

09-Nov-2006C.Grah: Beamdiagnostics13 Geant 4 Simulation - BeCaS  A Geant4 BeamCal simulation has been set up (A.Sapronov).  Energy distribution for 2mrad and 20mrad DID (14mrad not yet simulated).  BeCaS can be configured to run with: –different crossing angles (corresponding geometry is chosen) –magnetic field (solenoid, (Anti) DID, use field map) –detailed material composition of BeamCal including sensors with metallization, absorber, PCB, air gap 20mrad Dose (MGy/a)

09-Nov-2006C.Grah: Beamdiagnostics14 BeCaS - Checkplots

09-Nov-2006C.Grah: Beamdiagnostics15 Beamparameter Reconstruction  Using the observables: – Etot // (1) Total energy – Rmom // (2) Average radius – Irmom // (3) radial moment – UDimb // (4) U-D imbalance – RLimb // (5) R-L imbalance – Eout // (6) Energy with r>=6 – PhiMom // (7) Phi moment – NoverE // (15) N/E

09-Nov-2006C.Grah: Beamdiagnostics16 GamCal – Using Photon Information  Use as much information about the collision as possible.  BeamCal measures the energy of pairs originating from beamstrahlung.  GamCal will measure the energy of the beamstrahlung photons (see B.Parker‘s talk). 1. Investigate correlation to learn how we can improve the beamdiagnostics and 2. define a signal proportional to the luminosity which can be fed to the feedback system. G.White QMUL/SLAC RHUL & Snowmass presentation position and angle scan Simulation of the Fast Feedback System of the ILC. 1.Standard procedur (using BPMs) 2.Include pair signal (N) as additional input to the sytsem Increase of luminosity of %

09-Nov-2006C.Grah: Beamdiagnostics17 Vertical Offset (y-direction) Studies by M.Ohlerich complementary information from 1.total photon energy vs offset_y 2.BeamCal pair energy vs offset_y ratio of E_pairs/E_gam vs offset_y is proportional to the luminosity similar behaviour for angle_y, waist_y …

09-Nov-2006C.Grah: Beamdiagnostics18 Summary  The geometry for a 14mrad beam crossing angle is the same as for 20mrad. The 20mrad geometry should be changed due to background.  The LowP parameter set is under discussion => lower L or higher background.  Consolidated guineapig steering parameters and reproduced pair/photon files.  Tested 2, 14 and 20 mrad configurations with DID/AntiDID field.  A Geant4 simulation of BeamCal (BeCaS) is ready for usage. First tests show that a subset of the detector information seems sufficient for beam parameter reconstruction. –Include this into Mokka –Build additional fast FCAL simulation (?)  GamCal could provide valuable information about the collision –partly complenentary to BeamCal information –E pair /E γ is a signal proportional to the luminosity for several beam parameters