THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Microwave Rotational Spectroscopy
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Determination of succinic acid structure in the gas phase by cm/mm spectroscopy Estíbaliz Méndez Alija University of The Basque Country, UPV/EHU, Spain.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
Rotational spectroscopy of newly detected atmospheric ozone depleters: CF 3 CH 2 Cl, CF 3 CCl 3, and CFClCCl 3 Zbigniew Kisiel, Ewa Białkowska-Jaworska,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
The complete rotational spectrum of CH 3 NCO up to 376 GHz Zbigniew Kisiel, a Lucie Kolesnikova, b Jose L. Alonso, b Ivan R. Medvedev, c Sarah Fortman,
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Anomalous Hyperfine Structure of NSF 3 in the Degenerate Vibrational State v 5 = 1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
Further analysis of the laboratory rotational spectrum of CH3NCO
International Symposium on Molecular Spectroscopy
Max Planck Institute for the Structure and Dynamics of Matter
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
FOUR STRUCTURES OF TARTARIC ACID REVEALED IN THE GAS PHASE
Carlos Cabezas and Yasuki Endo
The microwave spectrum of lactaldehyde, the simplest chiral sugar.
SEVEN CONFORMERS OF PIPECOLIC ACID IDENTIFIED IN THE GAS PHASE
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
Fourier transform microwave spectra of n-butanol and isobutanol
ROTATIONAL SPECTRA OF HYDROGEN BONDED NETWORKS OF AMINO ALCOHOLS
The Conformational Landscape of Serinol
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
and analysis of hyperfine structure from four quadrupolar nuclei
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad de Valladolid SPAIN

Introduction D-Glucose - 4 C 1 -anomer β - 4 C 1 -anomer Alonso, J. L. et al. Chemical Science 2014, 5, 515. GAS PHASE  The first conformational characterization of isolated D-glucose molecule in gas phase became recently possible due to the latest developments of Fourier transform microwave techniques coupled with laser ablation vaporizations methods (LA-MB-FTMW)

Introduction  Glucosamine is an amino monosaccharide, that differs structurally from the parent D- glucose by replacement of the hydroxyl group on C-2 by an amino group D-Glucosamine D-Glucose  It is an essential precursor of important nitrogen-containing macromolecules like glycoproteins, glycolipids and glycosaminoglycans  D-glucosamine is chemically unstable, only commercially available as D-glucosamine hydrochloride, where it appears in the protonated form  No experimental data on the conformational behavior of its neutral form has been reported hitherto

Aims  Generation of neutral D-glucosamine in gas phase (?) by laser ablation of the crystalline sample D-glucosamine hydrochloride  Study of the conformational behavior of D-glucosamine in isolation conditions of the gas phase (in a supersonic expansion)  Comparison of the conformational behavior of D-glucosamine with that observed in the archetypal D-glucose. How does the replacement of the OH group by the NH 2 group affect the conformational behavior?

Modelling: plausible configurations  -forms β- forms Newman projections of plausible conformations of the hydroxymethyl group around the C 5  C 6 (G , G+, T) and C 6  O 6 (g , g+, t) bonds

Experimental: CP-FTMW + Laser Ablation 6-18 GHz Frequency Range S. Mata I. Peña, et al. J. Mol. Spectr. 280(2012) 91–96 GEM. Valladolid

CP-FTMW spectra: assignment Rotamer I 7 07    6 06 a-type (J + 1) 0 J +1 ← J 0 J and (J + 1) 1 J +1 ← J 1 J and b-type (J + 1) 1 J +1 ← J 0 J and (J + 1) 0 J +1 ← J 1 J R-branch progressions become degenerated with the increasing J 8 08        8 08 unknown (H 2 O) 2 CH 2 CHCHO HC 3 N CH 2 CHCN (H 2 O) 6 unknown

Results ExperimentRotamer IRotamer IIRotamer III A [a] / MHz (23) [e] (29) (18) B / MHz (13) (12) (94) C / MHz (36) (33) (54) a-type transitions [b] observed b-type transitionsobserved  c-type transitions   N [c]  fit [d]  / kHz Theory A [a] BCχ aa χ bb χ cc |μ a ||μ b ||μ c |ΔE [b] ΔG [c]  -G-g+/cc/t   -G+g-/cc/t   -Tg+/cc/t   -G-g+/cl/g   -Tt/cl/g   -Tg-/cl/g  β -G-g+/cc/t d0d 0 β -G+g-/cc/t β -Tg+/cc/t NO CONCLUSIVE IDENTIFICATION!! -forms WHAT ABOUT THE QUADRUPOLE CONSTANTS??

Results The values of  aa,  bb and  cc can discriminate conformers  -G-g+/cc/t  - G+g-/cc/t  - Tg+/cc/t  - G-g+/cl/g-  - Tt/cl/g-  - Tg-/cl/g- cc cl  aa /MHz 2.21  bb /MHz  cc /MHz1.70  aa /MHz 0.66  bb /MHz  cc /MHz1.78  aa /MHz 2.54  bb /MHz  cc /MHz1.79  aa /MHz 2.76  bb /MHz 0.51  cc /MHz-3.26  aa /MHz 2.76  bb /MHz 0.46  cc /MHz-3.22  aa /MHz 2.75  bb /MHz 0.40  cc /MHz N

Experimental: LA-MB-FTMW A high resolution LA-MB-FTMW study is needed FT-MW Spectrometer Fabry-Pérot Resonator Picosecond Laser 3-10 GHz I. Peña et al. JACS 134 (2012) 2305–2312 3232 F’F’’=54 4343 3232 4343 5454 14 N nuclear quadrupole coupling hyperfine structure is completely resolved Rotamer III Rotamer I

Results Theory A [a] BCχ aa χ bb χ cc |μ a ||μ b ||μ c |ΔE [b] ΔG [c]  -G-g+/cc/t   -G+g-/cc/t   -Tg+/cc/t   -G-g+/cl/g   -Tt/cl/g   -Tg-/cl/g  Experiment Rotamer IRotamer IIRotamer III A [a] / MHz (15) [e] (82) (14) B / MHz (26) (14) (13) C / MHz (86) (50) (56) χ aa [b] / MHz2.159 (16)0.637 (5)2.487 (6) χ bb / MHz  (14)  (4)  (5) χ cc / MHz1.567 (14)1.641 (4)1.642 (5) N [c]  fit [d]  / kHz A conclusive identification is achieved!

Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.

Conclusions -D-Glucosamine G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.  The substitution of the hydroxyl group at C-2 by the amino group in  -D-glucosamine does not introduce any changes into the gas phase conformational preferences; the three observed conformers of D- glucosamine correlate with those observed in  -D-glucose.

Conclusions -D-Glucosamine -D-Glucose G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.  The substitution of the hydroxyl group at C-2 by the amino group in  -D-glucosamine does not introduce any changes into the gas phase conformational preferences; the three observed conformers of D- glucosamine correlate with those observed in  -D-glucose.  The orientation of the NH 2 group within each conformer has been delineated by the values of the nuclear quadrupole constants; adopts the same role than the OH group in the intramolecular hydrogen bonding network.

Conclusions -D-Glucosamine -D-Glucose G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

ACKNOWLEDGMENTS Grants CTQ , AYA and AYA CSD Molecular Astrophysics Grants VA070A08 and CIP13/01 Grupo de Espectroscopia Molecular (GEM) Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, UVa,Valladolid, Spain