Presented by XGC: Gyrokinetic Particle Simulation of Edge Plasma CPES Team Physics and Applied Math Computational Science.

Slides:



Advertisements
Similar presentations
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Advertisements

Workflow automation for processing plasma fusion simulation data Norbert Podhorszki Bertram Ludäscher Scientific Computing Group Oak Ridge National Laboratory.
Chalkidikhi Summer School Plasma turbulence in tokamaks: some basic facts… W.Fundamenski UKAEA/JET.
US SciDAC Fusion Simulation Prototype Center for Plasma edge Simulation -CPES- C.S. Chang a) on behaf of the CPES team a) Courant Institute of Mathematical.
XGC gyrokinetic particle simulation of edge plasma
Modeling Generation and Nonlinear Evolution of VLF Waves for Space Applications W.A. Scales Center of Space Science and Engineering Research Virginia Tech.
Computational Modeling Capabilities for Neutral Gas Injection Wayne Scales and Joseph Wang Virginia Tech Center for Space Science and Engineering.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Magnetic Reconnection in Multi-Fluid Plasmas Michael Shay – Univ. of Maryland.
Exploration of Fusion Plasmas Using Integrated Simulations Jill Dahlburg, Naval Research Laboratory Presented by Dale Meade, Princeton University With.
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4, and the NIMROD team 1 Lehigh University,
Turbulent transport in collisionless plasmas: eddy mixing or wave-particle decorrelation? Z. Lin Y. Nishimura, I. Holod, W. L. Zhang, Y. Xiao, L. Chen.
Predictive Integrated Modeling Simulations Using a Combination of H-mode Pedestal and Core Models Glenn Bateman, Arnold H. Kritz, Thawatchai Onjun, Alexei.
Iterative and direct linear solvers in fully implicit magnetic reconnection simulations with inexact Newton methods Xuefei (Rebecca) Yuan 1, Xiaoye S.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
The SWIM Fast MHD Campaign Presented by S. C. Jardin Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ Simulation of Wave Interaction.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
Particle-in-Cell Simulations of Electron Transport from Plasma Turbulence: Recent Progress in Gyrokinetic Particle Simulations of Turbulent Plasmas Z.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Presented by Gyrokinetic Particle Simulations of Fusion Plasmas Scott A. Klasky Scientific Computing National Center for Computational Sciences.
SDM Center End-to-end data management capabilities in the GPSC & CPES SciDAC’s: Achievements and Plans SDM AHM December 11, 2006 Scott A. Klasky End-to-End.
Terascale Computations of Multiscale Magnetohydrodynamics for Fusion Plasmas: ORNL LDRD Project D. A. Spong *, E. F. D’Azevedo †, D. B. Batchelor *, D.
PEPSC Plan for Self-consistent Simulations of Fast Ion Transport with Source and Sink Guoyong Fu Princeton Plasma Physics Laboratory.
11/10/20151 Working towards ITER/FSP “Fueling the Future” Pindzola (Auburn) Cummings (Caltech) Parker, Chen (Colorado) Adams, Keyes (Columbia) Hinton (GA)
1 Non-neutral Plasma Shock HU Xiwei (胡希伟) 工 HU Xiwei (胡希伟) HE Yong (何勇) HE Yong (何勇) Hu Yemin (胡业民) Hu Yemin (胡业民) Huazhong University of Science and.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Comparison of Ion Thermal Transport From GLF23 and Weiland Models Under ITER Conditions A. H. Kritz 1 Christopher M. Wolfe 1 F. Halpern 1, G. Bateman 1,
Integrated Modeling for Burning Plasmas Workshop (W60) on “Burning Plasma Physics and Simulation 4-5 July 2005, University Campus, Tarragona, Spain Under.
High Speed Imaging of Edge Turbulence in Magnetic
Study of NSTX Electron Density and Magnetic Field Fluctuation using the FIReTIP System K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
1 Lawrence Livermore National Laboratory Influence of Equilibrium Shear Flow on Peeling-Ballooning Instability and ELM Crash Pengwei Xi 1,2, Xueqiao Xu.
Kinetic MHD Simulation in Tokamaks H. Naitou, J.-N. Leboeuf †, H. Nagahara, T. Kobayashi, M. Yagi ‡, T. Matsumoto*, S. Tokuda* Joint Meeting of US-Japan.
D. McCune 1 PTRANSP Predictive Upgrades for TRANSP.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
J.-N. Leboeuf V.K. Decyk R.E. Waltz J. Candy W. Dorland Z. Lin S. Parker Y. Chen W.M. Nevins B.I. Cohen A.M. Dimits D. Shumaker W.W. Lee S. Ethier J. Lewandowski.
Comprehensive ITER Approach to Burn L. P. Ku, S. Jardin, C. Kessel, D. McCune Princeton Plasma Physics Laboratory SWIM Project Meeting Oct , 2007.
EXTENSIONS OF NEOCLASSICAL ROTATION THEORY & COMPARISON WITH EXPERIMENT W.M. Stacey 1 & C. Bae, Georgia Tech Wayne Solomon, Princeton TTF2013, Santa Rosa,
1 A Proposal for a SWIM Slow-MHD 3D Coupled Calculation of the Sawtooth Cycle in the Presence of Energetic Particles Josh Breslau Guo-Yong Fu S. C. Jardin.
Edge Two Fluids and Gyrokinetic Continuum Simulations Xueqiao Xu Presented at ITER Fusion Simulation Workshop May 16, 2006, Peking University.
Modelling the Neoclassical Tearing Mode
QAS Design of the DEMO Reactor
1 Recent Studies of NSTX Edge Plasmas: XGC0 Modeling, MARFE Analysis and Separatrix Location F. Kelly a, R. Maqueda b, R. Maingi c, J. Menard a, B. LeBlanc.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Summary on transport IAEA Technical Meeting, Trieste Italy Presented by A.G. Peeters.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Integrated Modeling for Burning Plasmas Workshop (W60) on “Burning Plasma Physics and Simulation 4-5 July 2005, University Campus, Tarragona, Spain Under.
BOUT++ Towards an MHD Simulation of ELMs B. Dudson and H.R. Wilson Department of Physics, University of York M.Umansky and X.Xu Lawrence Livermore National.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
Unstructured Meshing Tools for Fusion Plasma Simulations
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
Gyrofluid Turbulence Modeling of the Linear
Center for Plasma Edge Simulation
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Development and Analysis of Gas Puff CXRS in SOL
MFE Simulation Data Management
(TH/8-1, Jae-Min Kwon et al
A gyrokinetic discovery of fast L-H bifurcation physics in a realistic, diverted, tokamak edge geometry S. Ku et al. TH/2-1 A fast edge turbulence.
XGC simulation of CMOD edge plasmas
Integrated Modeling for Burning Plasmas
Presentation transcript:

Presented by XGC: Gyrokinetic Particle Simulation of Edge Plasma CPES Team Physics and Applied Math Computational Science

2 Klasky_XGC_0611 Computational Science California Institute of Technology J. Cummings Lawrence Berkeley National Laboratory Shoshani Oak Ridge National Laboratory R. Barreto, S. Klasky, P. Worley Princeton Plasma Physics Laboratory S. Ethier, E. Feibush Rutgers M. Parashar, D. Silver University of California - Davis B. Ludäscher, N. Podhorszki University Tennessee - Knoxville M. Beck University of Utah S. Parker CPES Team Physics and Applied Math New York University Chang, Greengard, Ku, Park, Strauss, Weitzner, Zorin Oak Ridge National Laboratory Schultz, D’Azevedo, Maingi Princeton Plasma Physics Laboratory Hahm, Lee, Stotler, Wang, Zweben Columbia University Adams, Keyes Lehigh University Bateman, Kritz, Pankin University of Colorado Parker, Chen University of California - Irvine Lin, Nishimura Massachusetts Institute of Technology Sugiyama, Greenwald Hinton Associates Hinton

3 Klasky_XGC_0611 Physics in tokamak plasma edge  Plasma turbulence  Turbulence suppression (H-mode)  Edge localized mode and ELM cycle  Density and temperature pedestal  Diverter and separatrix geometry  Plasma rotation  Neutral collision ITER ( Edge turbulence in NSTX 100,000 frames/s) Diverted magnetic field

4 Klasky_XGC_0611 XGC development roadmap Black: Achieved Blue: In progress Red: To be developed Full-f neoclassical ion root code (XGC-0) Buildup of pedestal along ion root by neutral ionization Full-f ion-electron electrostatic code (XGC-1) - Whole edge Neoclassical solution Turbulence solution Full-f electromagnetic code (XGC-2) Study L-H transition Multi-scale simulation of pedestal growth in H-mode XGC-MHD coupling for pedestal-ELM cycle

5 Klasky_XGC_0611 XGC 1 code  Particle-in-cell code  5-dimensional (3-D real space + 2-D velocity space)  Conserving plasma collisions (Monte Carlo)  Full-f ions, electrons, and neutrals  Gyrokinetic Poisson equation for neoclassical and turbulent electric field  PETSc library for Poisson solver  MPI for parallelization  Realistic magnetic geometry containing X-point  Particle source from neutral ionization

6 Klasky_XGC_0611 RoutineTime %Peak Performance Total100%6% Poisson7%~1.5% Pushing37%~8% Charging50%~4% Peak performance of XGC1 on Jaguar  131M ions and 131M electrons, 200K nodes  Peak performance with 2048 cores, using strong scaling results  Working with team members to increase peak performance to 18%

7 Klasky_XGC_0611 Scalability of XGC1 on Jaguar: Near linear scaling for strong, linear scaling for weak scaling XGC Strong Scaling : 131M ions and electrons, 200K grid XGC Weak Scaling : 50K ions and electrons/core 1001,00010,000 1.E+06 1.E+07 1.E+08 1.E+09 Speed (# of particle x step/s) Number of Cores 1.E+04 1.E+05 1.E+06 1.E ,00010,000 Number of Cores Speed (# of particle/s)

8 Klasky_XGC_0611 Neoclassical potential and flow of edge plasma from XGC1 Electric potential Parallel flow and particle positions

9 Klasky_XGC_0611 Phs-0: Simple coupling: with M3D and NIMROD XGC-0 grows pedestal along neoclassical root MHD checks instability and crashes the pedestal The same with XGC-1 and 2 Phs-2: Kinetic coupling: MHD performs the crash XGC supplies closure information to MHD during crash Phs-3: Advanced coupling: XGC performs the crash M3D supplies the B crash information to XGC during the crash XGC-MHD coupling plan Black: Developed Red: To be developed

10 Klasky_XGC_0611 Data replication XGC-M3D code coupling Code coupling framework with Kepler-HPC XGC on Cray XT3 End-to-end system 160p, M3D runs on 64P Monitoring routines here Ubiquitous and transparent data access via logistical networking User monitoring Data replication Post-processing 40 Gb/s Data archiving

11 Klasky_XGC_0611 M3D equilibrium and linear simulations new equilibrium from eqdsk, XGC profiles Equilibrium poloidal magnetic flux Linear perturbed poloidal magnetic flux, n = 9 Linear perturbed electrostatic potential

12 Klasky_XGC_0611 Contact Scott A. Klasky Lead, End-to-End Solutions Center for Computational Sciences (865) Klasky_XGC_0611