1 Work in Science. 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition of work.

Slides:



Advertisements
Similar presentations
Work in Science.
Advertisements

Work and Simple Machines 1. What is work? In science, the word work has a different meaning than you may be familiar with. Work: using a force to move.
1 Work and Simple Machines. Work Answer the following questions with your elbow partner.  What is work?  Does everyone do work?  We are going to contrast.
Definitions: Energy: Work= Force: Ability to do work Force x Distance
 In science, the word work has a different meaning than you may be familiar with.  The scientific definition of work is: using a force to move an object.
Work and Simple Machines
What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition of work is: using a force.
Work and Power Chapter 5!! The End of the ROAD is near…..!!
Work. What is work? In science, the word work has a different meaning than you may be familiar with. The scientific definition of work is: using a force.
Chapter 8 Work. Terms to Learn Work - the action that results when a force causes an object to move in the direction of the force being applied and only.
Question of the Day Rules You must work alone You may NOT USE your textbook today You have 6 minutes to complete the QOD Good luck!!
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
1 Work and Power. 2 What is work?  Definition: energy transferred by a _____________ to move an object a _____________ (when both the force and the motion.
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
Work and Simple Machines
Work and Simple Machines
Work and Power.
Simple Machines Work and Simple Machines What is a Simple Machine?  A simple machine has few or no moving parts.  Simple machines make work easier.
Work and Simple Machines
1.  Read each slide carefully.  Record notes on notebook paper.  Give your notes a title: “Work Notes”  Write the title of each page in which you.
1 2 3  Write down what you know about the following terms. 4.
1 Work and Power. 2 History of Work Before engines and motors were invented, people had to do things like lifting or pushing heavy loads by hand. Using.
Simple Machines Work and Simple Machines What is a Simple Machine?  A simple machine has few or no moving parts.  Simple machines make work easier.
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
The weight lifter applies a large force to hold the barbell over his head. Because the barbell is motionless, no work is done on the barbell.
1 Work and Simple Machines. 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
Work and Simple Machines. Work When a force causes an object to move – work is done. When a force causes an object to move – work is done.
 Energy, Work and Simple Machines  Chapter 10  Physics.
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
We will describe and illustrate forces. I will draw pictures of forces in everyday life. 8/31/2015 Agenda  Bell Ringer  Force PPT and Notes  Assessment.
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
They keep us grounded.  A force is simply a push or a pull.  F = ma (mass x acceleration)  Forces are measured in Newtons  Force has direction (whichever.
1 Work Mrs. Anna Ward Ridge Road MS. Do Now!!! Page 39  What does Newton’s First law state?  Caia and Alexandria are pushing Mrs. Ward on a rolling.
1 Work and Intro to Energy. OPENER: ( 5 min) 1. Turn to the next available page in your journal 2. Write the date: 3. Write the word ENERGY in LARGE letters.
1. What is work? In science, the word work has a different meaning than you may be familiar with. The scientific definition of work is: using a force.
Work.
1 Work and Simple Machines 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
THIS PAGE WILL BE GONE IN 5 mins BE SURE TO HAVE YOUR ID VISIBLE AROUND YOUR NECK, NO NON- POLY ATTIRE! DRILL: WORKDate: Jan 23, 2012 Define work in your.
Understanding and Calculating Work Work - When a force acts on an object and causes it to move through a distance, energy is transferred and work is done.
1. In science, the word work has a different meaning than you may be familiar with. Work: using a force to move an object a distance 2.
Work and Simple Machines 1. Warm Up – copy the objective What is work? Open textbook to page
STARTER WHAT ARE THE SIX SIMPLE MACHINES? WHY DO WE USE SIMPLE MACHINES? WHAT IS THE EFFORT FORCE AND RESISTANCE FORCE? WHAT IS MECHANICAL ADVANTAGE?
Work Work happens when a force moves an object over a distance.
Work and Simple Machines
Work and Power.
Work.
Unit 8-4 & 8-5 Work and Machines
Today’s Agenda… Bellringer: What conditions have to be met for something to be considered work? Discuss Homework Notes on Work and Machines Simple Machines.
How do machines make work easier?
Work and Simple Machines
Work.
Work and Power.
Homeroom/Intervention Warm Up
Write a response to this question in your own words.
Work Mrs. Anna Ward Ridge Road MS
Objective 68 : I can describe work
Work and Simple Machines
Objectives: Learning Intentions – Success Criteria –
The Scientific Meaning of Work
Work and Power.
Unit 8-4 & 8-5 Work and Machines
Work Work happens when a force moves an object over a distance.
Work and Machines Review
Today we will: Learn what “work” is! Learn how to calculate work
Potential & Kinetic Energy
Work.
Work and Simple Machines
Work Work happens when a force moves an object over a distance.
Work and Simple Machines
Presentation transcript:

1 Work in Science

2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)

3 Work or Not?  According to the scientific definition, what is work and what is not? a teacher lecturing to her class a teacher lecturing to her class a mouse pushing a piece of cheese with its nose across the floor a mouse pushing a piece of cheese with its nose across the floor

4 Work or Not?  According to the scientific definition, what is work and what is not? a teacher lecturing to her class a teacher lecturing to her class a mouse pushing a piece of cheese with its nose across the floor a mouse pushing a piece of cheese with its nose across the floor

5

6 What’s work?  A scientist delivers a speech to an audience of his peers.  A body builder lifts 350 pounds above his head.  A mother carries her baby from room to room.  A father pushes a baby in a carriage.  A woman carries a 20 kg grocery bag to her car?

7 What’s work?  A scientist delivers a speech to an audience of his peers. No  A body builder lifts 350 pounds above his head. Yes  A mother carries her baby from room to room. No  A father pushes a baby in a carriage. Yes  A woman carries a 20 km grocery bag to her car? No

8 Formula for work Work = Force x Distance  The unit of force is newtons  The unit of distance is meters  The unit of work is newton-meters  One newton-meter is equal to one joule  So, the unit of work is a joule

9 W=FD Work = Force x Distance Calculate: If a man pushes a concrete block 10 meters with a force of 20 N, how much work has he done?

10 W=FD Work = Force x Distance Calculate: If a man pushes a concrete block 10 meters with a force of 20 N, how much work has he done? 200 joules (W = 20N x 10m)

Work  Work happens when a force moves an object over a distance.  If the object does not move, NO work is done!  (Scientifically speaking)

Work  Stand and hold your arms out in front of you at waist level, palms up.  Have your partner stack two books on your hands, one on each hand.  Lift the books to about shoulder level, then lower them.  Now try raising them overhead

Work  When your hands are overhead, are you working harder than when you raised them to shoulder level?  Describe your observations to your partner.

Work  Have your partner put two more books on each of your hands, so you’re holding four books. Try to raise them to shoulder level.  Are you pushing harder (using more force) than when you were holding only two books?  Describe your observations to your partner.

Work  Hold the four books at shoulder level until your arms get tired. Are you exerting force?  Do you think you are doing work in these situations? What is the work being done on?  Describe your observations to your partner.

Work  You have 5 objects on your table.  Use the spring scale and a meter stick to find the force needed to move each object one meter.