DOIM Parallel Optical Link s: TX/RX S. Hou, R.S. Lu 19-Dec-2003, Lake Geneva.

Slides:



Advertisements
Similar presentations
IEEE10/NSS R. Kass N A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State.
Advertisements

J.Ye / SMU May 18, 2015 GOL + SoS R & D Work at SMU 1.The Test of the GOL chip. 2.First test on the SoS driver chip and the submission of a dedicated test.
Richard Kass IEEE NSS 11/14/ Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
TileCal Electronics A Status Report J. Pilcher 17-Sept-1998.
VERTEX 2002 Experience with Parallel Optical Link for the CDF Silicon Detector S. Hou for the DOIM group Academia Sinica, Taiwan.
EE 230: Optical Fiber Communication Lecture 10 From the movie Warriors of the Net Light Sources and Transmitters.
Power Distribution FPGADDR2 OEM Board Flash MEMSSDINSD3 Cameras Connector Board 1.2V1.8V5V3.3V 3.3V, 5V, 12V 15V3.3V9-36V.
Fiber-Optic Communications James N. Downing. Chapter 5 Optical Sources and Transmitters.
Effects of Duty Cycle Variation of ‘BX’ at PP end of 100m cable March 1, 2005 Mitch Newcomer.
Ionization Profile Monitor Front End (IFE) System Presenter: Kwame Bowie PPD/EED Phone: (630)
November 3-8, 2002D. Bortoletto - Vertex Silicon Sensors for CMS Daniela Bortoletto Purdue University Grad students: Kim Giolo, Amit Roy, Seunghee.
Lecture 4b Fiber Optics Communication Link 1. Introduction 2
05/11/06Sasha Pronko, Silicon Workshop II, UCSB1 PORTCARDs & DOIMs Sasha Pronko Fermilab.
Fiber Optic Light Sources
Fiber Optic Receiver A fiber optic receiver is an electro-optic device that accepts optical signals from an optical fiber and converts them into electrical.
20-24 September 2010, TWEPP, Aachen, Germany D. 1 Datao Gong On behalf of the ATLAS Liquid Argon Calorimeter Group Department of Physics,
A Company Selling Technology and not just a Product.
LECC03, 9/30/2003 Richard Kass/OSU 1 Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
IEEE06/San Diego R. Kass N Bandwidth of Micro Twisted-Pair Cables and Spliced SIMM/GRIN Fibers and Radiation Hardness of PIN/VCSEL Arrays W. Fernando,
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
DPF 2013 R. Kass 1 P. Buchholz, M. Ziolkowski Universität Siegen OUTLINE Lessons learned… IBL/nSQP opto-board overview assembly experience radiation hardness.
R. KassIEEE05/Puerto Rico N Radiation-Hard Optical Link for the ATLAS Pixel Detector Richard Kass The Ohio State University W. Fernando, K.K. Gan,
R. KassIEEE04/Rome 1 Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector Richard Kass The Ohio State University K.E. Arms, K.K.
Feb 20, 2009 CALICE meeting, Daegu, Korea QRL in Magnetic Field 1 QRLed Driver in Magnetic Field Jaroslav Zalesak Institute of Physics of the ASCR, Prague.
Status of the PiN diodes irradiation tests B. Abi( OSU), R. Boyd (OU), P. Skubic (OU), F. Rizatdinova (OSU), K.K. Gan (Ohio State U.)
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 3-1 Electronics Principles & Applications Eighth Edition Chapter 3 Diodes Charles.
IEEE08/NSS R. Kass N Radiation-Hard/High-Speed Data Transmission Using Optical Links W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, J. Moore,
1 L0 Calorimeter Trigger LHCb Bologna CSN1 Assisi, 22/9/04 U. Marconi INFN Sezione di Bologna.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Mahmoud Al-Saba – Majed Al-Bishi –
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
Chapter 4 Logic Families.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
Irradiation Test of the Omegapix2 Digital Tier May 18-22, 2015, CERN Olivier Le Dortz, LPNHE Paris Juin 2015.
MOCT(Magneto Optic Current Transduser)
ICTPP09 R. Kass Radiation-Hardness of VCSELs & PINs Richard Kass The Ohio State University OUTLINE Introduction/ATLAS pixel detector Radiation Hardness.
S.Hou, Academia Sinica Taiwan. 2Outline Optical links for ATLAS Laser-driver  fiber  PIN-driver LHC modules in service Rad-hard requirement for LHC/SLHC.
25th June, 2003CMS Ecal MGPA first results1 MGPA first results testing begun 29 th May on bare die (packaging still underway) two chips looked at so far.
Novel Semi-Transparent Optical Position Sensors for high-precision alignment monitoring applications Sandra Horvat, F.Bauer, V.Danielyan, H.Kroha Max-Planck-Institute.
JgimenoIWM-12/1/2004 Fiber Optic module 1 STUDIES AND DEVELOPMENT OF A FIRST FIBER OPTIC MODULE PROTOTYPE Javier Gimeno Vicente.
Proposal to Test Improved Radiation Tolerant Silicon Photomultipliers F. Barbosa, J. McKisson, J. McKisson, Y. Qiang, E. Smith, D. Weisenberger, C. Zorn.
Honeywell Advanced Photonics Development Overview ATLAS Meeting January 7, 1999 John Lehman Honeywell Technology Center
DPF 2011 R. Kass 1 P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen OUTLINE Introduction Result on 4-channel Driver/Receiver with Redundancy Design.
K.K. GanUS ATLAS Pixel Meeting1 Opto-IC/Board K.K. Gan The Ohio State University WBS & 4 July 9, 2003.
Implementing a 10 Gb/s VCSEL Driven Transmitter for Short Range Applications Irfan N. Ali Michael C. Clowers David S. Fink Sean K. Garrison Jeff A. Magee.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
PIN current degradation Versus 3 MeV proton fluence 3 MeV proton (a)(b) (c)(d) Study of radiation damage in VCSELs and PINs for the optical links of the.
DAQMB Status – Onward to Production! S. Durkin, J. Gu, B. Bylsma, J. Gilmore,T.Y. Ling DAQ Motherboard (DMB) Initiates FE digitization and readout Receives.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Timing System R+D for the NLC Josef Frisch. NLC and PEPII Phase and Timing Requirements (approximate)
Radiation 4-5 December 2005 AB/BDI/BL.
A 3-V Fully Differential Distributed Limiting Driver for 40 Gb/s Optical Transmission Systems D.S. McPherson, F. Pera, M. Tazlauanu, S.P. Voinigescu Quake.
1 Roger Rusack The University of Minnesota. Projects  Past Projects  11,000 channels of 0.8 Gbs for the CMS crystal calorimeter readout.  1,500 channels.
Radiation hardness of the 1550 nm edge emitting laser for the optical links of the CDF silicon tracker S. Hou 15-Jun-2004.
FCC DIGITAL 1ch VIDEO&1ch AUDIO LINK PRODUCT SPECIFICATION
FCC DIGITAL 4CH VIDEO LINK PRODUCT SPECIFICATION
High-speed Light Peak optical link for high energy applications
Test Boards Design for LTDB
Status of the CDF II silicon tracking system
Next generation rad-hard links
FCC DIGITAL 2ch VIDEO & 1ch AUDIO / 1ch DATA LINK
Overview of the project
FCC DIGITAL 1ch VIDEO&1ch AUDIO/1ch DATA/1ch TELEPHONE LINK
DIGITAL VIDEO 16CH MUX SERIES
VCSEL drivers in ATLAS Optical links
BESIII EMC electronics
Optical links in the 25ns test beam
RS-422 Interface.
WELCOME.
Presentation transcript:

DOIM Parallel Optical Link s: TX/RX S. Hou, R.S. Lu 19-Dec-2003, Lake Geneva

Outline Electrical characteristics Laser array, PIN array, driver chips Bit-error rate test BERT at FCC Current balance test Enable, laser on/off Radiation Hardness UCDavis, INER, IUCF Most materials in cdf note 6497 Vertex 2002, NIM A

Introduction DOIM: Dense Optical Interface Module Byte-wide parallel optical link 8-bits + clock 53 Mbyte/sec, BER  Transmitter : Laser-diode array ASIC driver chip Receiver : PIN-diode array ASIC receiver chip Multi-mode fiber ribbon

DOIM implementation : transmitters Transmitters on Port Cards Total 570 transmitters 128 Port Cards, 5 transmitter each board

DOIM implementation : receivers Receivers on FTM 10 receivers on each board, reading 2 Port Cards

Laser diode array InGaAs/InP Edge-emitting laser diode array 1550 nm wavelength 12-ch diode array (9 used) 250  m pitch 20 mA/channel Cleaved mirrors Facet coating Bare laser power:  1 Insertion to fiber: 200 ~ 800  W/ch Custom made by Chunghwa Telecom Light cone : uniformity in far-field angle major application problem

Laser transmitter ASIC driver Custom design, biCMOS 0.8  m,AMS bipolar transistors only Inputs : Diff. ECL or LVDS signals compatible differential  100 mV Enable by TTL low Nine channels : V cc -V LD across output transistor, 50 , laser control current consumption At 3V, 20mA/ch nominal ~2mA/0.1V adjustable slope

Transmitter assembly Die-bond / Wire bond laser-diode array on BeO submount driver chip on substrate fibers on V-groove Alignment fibers to laser emitting facets

Receiver : PIN & ASIC driver InGaAs/InP PIN diode : 12-ch array, matching laser diode wavelength by TL, Chunghwa Telecom. Operation condition : 50 ~ 800  W on,  10  W off  1.1 W/module Outputs : differential ECL, nine independent channels

Receiver assembly Die-bond / Wire bond PIN-diode array on Al 2 O 3 submount driver chip on substrate fibers on V-groove Alignment, fibers to PIN-diodes

Laser transmitter characteristics Inputs: ECL or LVDS signal TTL-enable Constant Current through LDA or dummy 50  Light by O/E probe Input ECL TTL enable Current probe O/E light TTL enable

Current balance test 16 TX’s have been tested. Max. current change at 7mA while enable/disable TX. Records at

Laser diode: L-I-V Laser light at I,V and Temperature I-V approximately linear Duty cycle stable output to input 50% Linear to temperature Temp ( o C)

Receiver response Laser light source chosen for wide distribution light pulse width are consistent Examine Receiver ECL outputs use Tektronix diff. probe Consistent duty cycles in operation range 2.8~3.2V Saturates for high light level

Uniformity : transmitter light outputs Laser light at pigtail (30 o C) channel-by-channel span ~400  W  ~72  W to the mean/module Reduced dynamic range in operation

Uniformity : laser light pulse widths Light pulse width is uniform  ~1%, indep. of light power

Uniformity : receiver ECL output duty cycles Two production batches monitored at 550  W & 970  W light pulse width 45% ECL duty cycle is uniform 48.1% at 550  W, (2 nd batch)  =0.7% 4% wider in 1 st batch due to chip tuning Wide light input range Saturation at 970  W

Uniformity : ECL duty cycle deviation Receivers examied with Input lights ~950  W, width 45% for all channels ECL outputs of a module deviation to the mean  ~1.5% for both batches

Bit-Error Rate test BERT PC ISA boards TTL to Tbert, Rbert boards At 63 MHz, minimum BER  10 –12

UC Davis 63.3 MeV proton UC Davis test beam : 10 transmitters on two Port Cards Examined after 200, 400 kRad, for L I, V measurements Light degradation ~10% for 200 kRad Similar I-V, L-V characteristics after irradiation, slope for L vs. V degrades similarly.

INER 30 MeV proton Irradiation CDF requirement : 200 krad tolerance INER test beam : transmitter in DC mode. fiber connection out of beam area, measuring L, T versus dose.

Bulk damage, annealing Bulk damage dominant, linear dep. to dose Ratio of light drop is consistent for a module, indep. of light power Degradation  10% for 200 krad

IUCF DOIM irradiation Nice test setup, cooling fan killed 202 MeV proton, fluence=1.5x10 13, (704 krad GaAs) Temperature on substrate 44~76 o C AC mode DC mode

CDF requirement : Laser transmitter 200 krad tolerance Online measurement, AC/DC modes, water chilled fiber ECL inputs (pulse generator) Fiber ribbon cable outputs  Octopus  OE +Digital scope  DC PIN meters IUCF 200 MeV proton Irradiation

IUCF irradiation, signal quality AC mode (25MHz), laser signal monitored by O/E Two TX’s in beam, one channel eachbefore/after irradiation No degradation in duty cycle Before irradiation at fluence=3.0x10 13 (1.4 Mrad GaAs)

IUCF irradiation 2 TX, AC mode, 3 flux rate Cumulative fluence: 4.3, 12.8, 30 X10 12 Cumulative dose: 200, 600, 1400 krad

IUCF irradiation Flux rate dependence is nil Light degradation is a constant factor  less than 10% at 200 krad

IUCF irradiation 2 TX, AD to DC mode Cumulative fluence: 6.8, 13.6 X10 12 Cumulative dose: 320, 640 krad

IUCF irradiation 2 TX, DC mode, 3 flux rate, 8hours annealing Cumulative fluence: 1.7, 5.1, 11.9 X10 12 Cumulative dose: 80, 240, 560 krad  8hrs

Summary DOIM : delicate, yet tough p-n junction application Edge-emitting laser  sensitive to temperature Receiver  delicate on ECL fiber cable is GLASS!! Radiation tolerance is sufficient for CDF 10% degradation issue, can live on