Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.

Slides:



Advertisements
Similar presentations
Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!
Advertisements

Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
5: DataLink Layer5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Ethernet.
5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Link-layer Addressing r Ethernet.
1 Announcement r Homework #3 was due last night r Homework #4 is out.
1 School of Computing Science Simon Fraser University CMPT 771/471: Internet Architecture and Protocols Link Layer Instructor: Dr. Mohamed Hefeeda.
5: DataLink Layer5-1 Link Layer r Link layer services r Error detection and correction r Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet.
1 Last class r Random Access Protocols m Slotted Aloha m Aloha m CSMA/CD m “Taking Turns” Protocols r Link-Layer Addressing Today r Ethernet, Hubs and.
5: DataLink Layer – Ethernet, Hubs and Switches.
Chapter 5 Link Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 22.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
1 CSE401N: COMPUTER NetworkS LAN address & ARP Ethernet Basics.
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
LANs to WANs Management guide w.lilakiatsakun Text book LANs to WANs The complete management guide.
1 ECE453 – Introduction to Computer Networks Lecture 8 – Multiple Access Control (II)
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
1 Random Access Protocols r When node has packet to send m transmit at full channel data rate R. m no a priori coordination among nodes  two or more transmitting.
Chapter 13 Wired LANs: Ethernet
Lecture 17 Ethernet r Widely deployed because: m First LAN technology m Simpler and less expensive than token LANs and ATM m Kept up with the speed race:
LAN Technologies MAC protocols used in LANs, to control access to the channel Token Rings: IEEE (IBM token ring), for computer room, or department.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Computer Communication & Networks Lecture 13 Datalink Layer: Local Area Network Waleed Ejaz
Chapter 5 Link Layer Link Layer5-1 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter5_2.
Link Layer: MAC Ilam University Dr. Mozafar Bag-Mohammadi.
Data Link Layer Moving Frames. Link Layer Protocols: ethernet, wireless, Token Ring and PPP Has node-to-node job of moving network layer.
5: DataLink Layer 5a-1 18: Ethernet, Hubs, Bridges, Switches Last Modified: 10/27/2015 1:29:46 PM.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer LANs.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
1 Ethernet “dominant” LAN technology: cheap $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token LANs and ATM Kept up with speed.
1 Multiple Access: Ethernet Section Point-to-Point vs. Broadcast Media Point-to-point –PPP for dial-up access –Point-to-point link between Ethernet.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Link Layer 5.1 Introduction and services
Link Layer 5.1 Introduction and services
Random Access Protocols
MAC Addresses and ARP 32-bit IP address:
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
ARP: Address Resolution Protocol
CS 457 – Lecture 6 Ethernet Spring 2012.
Data Link Issues Relates to Lab 2.
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
Data Link Issues Relates to Lab 2.
Protocol layering and data
18: Ethernet, Hubs, Bridges, Switches
Protocol layering and data
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Presentation transcript:

Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering University of Wisconsin-Platteville

5: DataLink Layer5-2 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet 5.6 Hubs and switches

5: DataLink Layer5-3 Ethernet “dominant” wired LAN technology: r cheap <$20 for NIC r first widely used LAN technology r simpler, cheaper than token LANs and ATM r kept up with speed race: 10 Mbps – 100 Gbps Metcalfe’s Ethernet sketch

5: DataLink Layer5-4 Star topology r bus topology popular through mid 90s m all nodes in same collision domain (can collide with each other) r today: star topology prevails m active switch in center m each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other) bus: coaxial cable switch star

5: DataLink Layer5-5 Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern followed by one byte with pattern r used to synchronize receiver, sender clock rates

5: DataLink Layer5-6 Ethernet Frame Structure (more) r Addresses: 6 bytes m if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to network layer protocol m otherwise, adapter discards frame r Type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk) r CRC: checked at receiver, if error is detected, frame is dropped

5: DataLink Layer5-7 Ethernet: Unreliable, connectionless r connectionless: No handshaking between sending and receiving NICs r unreliable: receiving NIC doesn’t send acks to sending NIC m stream of datagrams passed to network layer can have gaps (missing datagrams) m gaps will be filled if app is using TCP m otherwise, app will see gaps r Ethernet’s MAC protocol: CSMA/CD

5: DataLink Layer5-8 Ethernet CSMA/CD algorithm 1. NIC receives datagram from network layer, creates frame 2. If NIC senses channel idle, starts frame transmission If NIC senses channel busy, waits until channel idle, then transmits 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame ! 4. If NIC detects another transmission while transmitting, aborts and sends jam signal 5. After aborting, NIC enters exponential backoff: after mth collision, NIC chooses K at random from {0,1,2,…,2 m -1}. NIC waits K·512 bit times, returns to Step 2

5: DataLink Layer5-9 Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits Bit time:.1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K· 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten collisions, choose K from {0,1,2,3,4,…,1023}

5: DataLink Layer5-10 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3 Multiple access protocols r 5.4 Link-layer Addressing r 5.5 Ethernet r 5.6 Link-layer switches

5: DataLink Layer5-11 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links at same rate m all nodes connected to hub can collide with one another m no frame buffering m no CSMA/CD at hub: host NICs detect collisions twisted pair hub

5: DataLink Layer5-12 Switch r link-layer device: smarter than hubs, take active role m store, forward Ethernet frames m examine incoming frame’s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured

5: DataLink Layer5-13 Switch: allows multiple simultaneous transmissions r hosts have dedicated, direct connection to switch r switches buffer packets r Ethernet protocol used on each incoming link, but no collisions; full duplex m each link is its own collision domain r switching: A-to-A’ and B- to-B’ simultaneously, without collisions m not possible with dumb hub A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6)

5: DataLink Layer5-14 Switches vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, learning algorithms Switch

5: DataLink Layer5-15 Chapter 5: Summary r principles behind data link layer services: m error detection, correction m sharing a broadcast channel: multiple access m link layer addressing r instantiation and implementation of various link layer technologies, e.g., Ethernet