Andy Bunker(AAO), Laurence Eyles, Kuenley Chiu (Univ. of Exeter, UK), Elizabeth Stanway (Bristol), Daniel Stark, Richard Ellis (Caltech) Mark Lacy (Spitzer),

Slides:



Advertisements
Similar presentations
Malaysia 2009 Sugata Kaviraj Oxford/UCL Collaborators: Sukyoung Yi, Kevin Schawinski, Eric Gawiser, Pieter van Dokkum, Richard Ellis Malaysia 2009 Early-type.
Advertisements

Current Topics: Lyman Break Galaxies - Lecture 5 Current Topics Lyman Break Galaxies Dr Elizabeth Stanway
CDFS SA12 SA15 Morphologies & Star Formation Histories of Massive Galaxies at z > 1.3 P. McCarthy & The GDDS Team Venice 2006.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Physical Properties of Spectroscopically-Confirmed z>6 Galaxies By Charles Griffin With special thanks to Dr. Eiichi Egami, and Dr. Benjamin Clément NASA.
Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
Downsizing & Galaxy Formation 2 nd Mitchell Symposium - April 2006 P. McCarthy OCIW Gemini Deep Deep Survey Team.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Lyman Break Galaxies, Dropouts, and Photometric Z Because galaxies are made of stars, we start with spectra of stars…
The Near Infrared Background Excess and Star Formation in the HUDF Rodger Thompson Steward Observatory University of Arizona.
30 March 2006 Galaxies and Structures through Cosmic Times, Venice1 EXOs: Candidate AGN at z ≥ 6 and intermediate-z evolved populations Anton Koekemoer.
Bruno Henriques Claudia Maraston & the Marie Curie Excellence Team Guinevere Kauffmann, Pierluigi Monaco Evolution of the Near-Infrared Emission from Galaxies:
Exploring the High-z Frontier — Galaxies at z  6 and beyond Haojing Yan (Carnegie Observatories) CCAPP/OSU Seminar April 8, 2008.
Galaxies at High Redshift and Reionization Bunker, A., Stanway, E., Ellis, R., Lacy, M., McMahon, R., Eyles, L., Stark D., Chiu, K. 2009, ASP Conference.
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
The Properties of LBGs at z>5 Matt Lehnert (MPE) Malcolm Bremer (Bristol) Aprajita Verma (MPE) Natascha Förster Schreiber (MPE) and Laura Douglas (Bristol)
Margaret Meixner (STScI, JHU) March 7, 2013
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Cosmological Reionization by Early Galaxies Brant E. Robertson, Richard S. Ellis, James S. Dunlop, Ross J. McLure&Daniel P. Stark, 'Early star- forming.
Massive galaxies at z > 1.5 By Hans Buist Supervisor Scott Trager Date22nd of june 2007.
Z > 6 Surveys Represent the Current Frontier Motivation: - census of earliest galaxies (z=6,  =0.95 Gyr) - contribution of SF to cosmic reionization -
Seeing the Distant Universe in Integral Field Spectroscopy at high redshift 3D Andrew Bunker, AAO & Oxford.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
3.SED Fitting Method Figure3. A plot between IRAC ch2 magnitudes (4.5  m) against derived stellar masses indicating the relation of the stellar mass and.
Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Exploring the Depths of the Universe.
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
Star-formation and galaxy formation in the early universe. Star-formation is put in by hand.
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Ranga-Ram Chary, Oct ’08 The First Billion Years of Galaxy Evolution Ranga-Ram Chary Spitzer Science Center/Planck Data Center California Institute of.
Observational Properties of z~6 Galaxies Rychard J. Bouwens UCSC Special thanks to Roderik Overzier, Mauro Giavalisco, Haojing Yan for helping me prepare.
New Results from the Recent HST Surveys: COSMOS, GOODS, UDF.
Sackler DSI Trustees: 2001, Aug, 01Richard McMahon ( 1 DAZLE: Dark Ages “Z” Lyman Explorer (visiting a Time when Galaxies are Young)
High-Redshift Galaxies in Cluster Fields Wei Zheng, Larry Bradley, and the CLASH high-z search group.
Galaxy Formation: Simple or Not? The Cosmic Dark Age Telescope: 6.5 m Infrared Optimized Next Generation Space Telescope to Launch in 2013 (+ …. Years)
Star formation and metal enrichment at z~1-2: First multi-object near-infrared spectroscopy with large telescopes and the future with FMOS Andy Bunker.
The European Extremely Large Telescope Studying the first galaxies at z>7 Ross McLure Institute for Astronomy, Edinburgh University.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
The First Billion Years of History - seeing Galaxies Close to the Dawn of Time Andrew Bunker, Andrew Bunker, Anglo-Australian Observatory & University.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Garth Illingworth (UCO/Lick Obs & University of California, Santa Cruz) and the HUDF09 team AAS January 2010 Washington DC Science with the New HST The.
Spitzer Imaging of i`-drop Galaxies: Old Stars at z ≈ 6 Laurence P. Eyles 1, Andrew J. Bunker 1, Elizabeth R. Stanway 2, Mark Lacy 3, Richard S. Ellis.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
NICMOS IMAGES OF THE UDF Rodger I. Thompson Steward Observatory University of Arizona.
The Making of the Hubble Ultra Deep Field
Did Galaxies Reionize the Universe? Richard Ellis, Caltech CIFAR February 2010.
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Ultra-Deep Spectroscopy of Lyman Break Galaxies at z~6 Elizabeth Stanway University of Bristol (ex-UW Madison) Also: Andy Bunker, Karl Glazebrook, Richard.
A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters Kazuaki Ota (Kyoto U) Johan Richard (Obs.Lyon), Masanori Iye (NAOJ), Takatoshi.
Elizabeth Stanway (UW-Madison) Andrew Bunker (Exeter) Star Forming Galaxies at z>5: Properties and Implications for Reionization With: Richard Ellis (Caltech)
Galaxies at z~6: I- drop Photometric Selection and the GLARE Project STScI May Symposium 2004 Galaxies at z~6 I - drop Photometric Selection and the GLARE.
Exploring the High-z Frontier — Galaxies at z  6 and beyond Haojing Yan (Carnegie Observatories) Purple Mountain Observatory July 14, 2008 Haojing Yan.
Galaxies at z=6-9 from the WFC3/IR Imaging of the Hubble Ultra Deep Field Presented By Kyle Burns AST 494 March 5, 2009.
Galaxies as Sources of Reionization Haojing Yan (Carnegie Observatories) Reionization Workshop at KIAA July 10, 2008 Haojing Yan (Carnegie Observatories)
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
Epoch of Reionization  Cosmic Reionization: Neutral IGM ionized by the first luminous objects at 6 < z < 15 Evidence: CMB polarization (Komatsu+2009)
Evolution of Rest-frame Luminosity Density to z=2 in the GOODS-S Field Tomas Dahlen, Bahram Mobasher, Rachel Somerville, Lexi Moustakas Mark Dickinson,
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
FIRST LIGHT IN THE UNIVERSE
Constraining Star Formation at z>7 Dan Stark (Caltech) Collaborators: Richard Ellis, Johan Richard, Avi Loeb, Eiichi Egami, Graham Smith, Andy Bunker,
Possibility of UV observation in Antarctica
The Presence of Massive Galaxies at z>5
A Population of Old and Massive Galaxies at z > 5
Constraints on Star Forming Galaxies at z>6.5
Black Holes in the Deepest Extragalactic X-ray Surveys
Presentation transcript:

Andy Bunker(AAO), Laurence Eyles, Kuenley Chiu (Univ. of Exeter, UK), Elizabeth Stanway (Bristol), Daniel Stark, Richard Ellis (Caltech) Mark Lacy (Spitzer), Richard McMahon, GLARE team (Glazbrook, Abraham…) Star-Forming Galaxies at Redshift 6

"Lyman break technique" - sharp drop in flux at  below Ly- . Steidel et al. have >1000 z~3 objects, "drop" in U-band.

HUBBLE SPACE TELESCOPE

"Lyman break technique" - sharp drop in flux at  below Ly- . Steidel et al. have >1000 z~3 objects, "drop" in U-band. Pushing to higher redshift- Finding Lyman break galaxies at z~6 : using i-drops.

Using HST/ACS GOODS data - CDFS & HDFN, 5 epochs B,v,i',z'

By selecting on rest- frame UV, get inventory of ionizing photons from star formation. Stanway, Bunker & McMahon (2003 MNRAS) selected z-drops 5.6<z<7 - but large luminosity bias to lower z. Contamination by stars and low-z ellipticals.

10-m Kecks 8-m Gemini ESO VLTs

The Star Formation History of the Univese Bunker, Stanway, z=5.8 Ellis, McMahon & McCarthy (2003) Keck/DEIMOS spectral follow-up & confirmation I-drops in the Chandra Deep Field South with HST/ACS Elizabeth Stanway, Andrew Bunker, Richard McMahon 2003 (MNRAS)

Looking at the UDF (going 10x deeper, z'=26  28.5 mag) who was right? Bunker, Stanway, Ellis &McMahon 2004

After era probed by WMAP the Universe enters the so-called “dark ages” prior to formation of first stars Hydrogen is then re-ionized by the newly-formed stars When did this happen? What did it? DARK AGES Redshift z

Implications for Reionization From Madau, Haardt & Rees (1999) -amount of star formation required to ionize Universe (C 30 is a clumping factor). This assumes escape fraction=1 (i.e. all ionzing photons make it out of the galaxies) Our UDF data has star formation at z=6 which is 3x less than that required! AGN cannot do the job. We go down to 1M_sun/yr - but might be steep  (lots of low luminosity sources - forming globulars?)

Ways out of the Puzzle - Cosmic variance - Star formation at even earlier epochs to reionize Universe (z>>6)? - Change the physics: different recipe for star formation (Initial mass function)? - Even fainter galaxies than we can reach with the UDF?

DAZLE - Dark Ages 'z' Lyman-alpha Explorer (IoA - Richard McMahon, Ian Parry; AAO - Joss Bland-Hawthorne

Spitzer – IRAC ( microns)

- z=5.83 galaxy #1 from Stanway, Bunker & McMahon 2003 (spec conf from Stanway et al. 2004, Dickinson et al. 2004). Detected in GOODS IRAC 3-4  m: Eyles, Bunker, Stanway et al.

Other Population Synthesis Models Maraston vs. Bruzual & Charlot B&C  =500Myr, 0.7Gyr, 2.4x10 10 Msun Maraston  =500Myr, 0.6Gyr, 1.9x10 10 Msun

● 30Myr const SFR with E(B-V)=0.1 ● No reddening ● 0.2solar metallicity

-Have shown that some z=6 I-drops have old stars & large masses (subsequently confirmed by H. Yan et al) -Hints that there may be z>6 galaxies similar (Egami lens). Mobasher source - z=6.5??? (may be lower-z) - Turn now to larger samples, to provide stellar mass density in first Gyr with Spitzer - - In Stark, Bunker, Ellis et al. (2007) we look at v- drops (z~5) in the GOODS-South - - In Eyles, Bunker, Ellis et al. (2007) we survey all the GOODS-S I-drops with Spitzer

Eyles, Bunker, Ellis et al. astro-ph/

JAMES WEBB SPACE TELESCOPE – successor to Hubble (2013+)

What is JWST? ● 6.55 m deployable primary ● Diffraction-limited at 2 µm ● Wavelength range µm ● Passively cooled to <50 K ● Zodiacal-limited below 10 µm ● Sun-Earth L2 orbit ● 4 instruments – µm wide field camera (NIRCam) – 1-5 µm multiobject spectrometer (NIRSpec) – 5-28 µm camera/spectrometer (MIRI) – µm guider camera (FGS/TF) ● 5 year lifetime, 10 year goal ● 2014 launch

ESA Contributions to JWST ● NIRSpec – ESA Provided – Detector & MEMS Arrays from NASA ● MIRI Optics Module – ESA Member State Consortium – Detector & Cooler/Cryostat from NASA ● Ariane V Launcher (ECA) (closely similar to HST model…)

JWST NIRSpec IST (ESA)

Conclusions - Large fraction (40%) have evidence for substantial Balmer/4000 Ang spectral breaks (old underlying stellar populations that dominate the stellar masses). - For these, we find ages of ∼ 200−700Myr, implying formation redshifts of 7<z(form)<18, and stellar masses ∼ 1−3×10 10 M ⊙. - - Analysis of I-drops undetected at 3.6μm indicates these are younger, considerably less massive systems. - - Emission line contamination does not seriously affect the derived ages and masses. - - Using the fossil record shows that at z>8 the UV flux from these galaxies may have played a key role in reionizing the Universe