Chapter 5 Laplace Transforms

Slides:



Advertisements
Similar presentations
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
Advertisements

International Journal of Computer Vision, MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS Snakes: Active Contour Models.
Chapter 10 馬可夫鏈 緒言 如果讀者仔細觀察日常生活中所發生的 諸多事件,必然會發現有些事件的未來 發展或演變與該事件現階段的狀況全然 無關,這種事件稱為獨立試行過程 (process of independent trials) ;而另一些 事件則會受到該事件現階段的狀況影響。
1 Chemical and Engineering Thermodynamics Chapter 2 Conservation of mass and energy Sandler.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Advanced Chemical Engineering Thermodynamics
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
1 Advanced Chemical Engineering Thermodynamics Appendix BK The Generalized van der Waals Partition Function.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Lecture 8 Median and Order Statistics. Median and Order Statistics2 Order Statistics 問題敘述 在 n 個元素中,找出其中第 i 小的元素。 i = 1 ,即為找最小值。 i = n ,即為找最大值。 i = 或 ,即為找中位數。
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
:New Land ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11871: New Land 解題者:施博修 解題日期: 2011 年 6 月 8 日 題意:國王有一個懶兒子,為了勞動兒子,他想了一個 辦法,令他在某天早上開始走路,直到太陽下山前,靠.
結構組專題討論 班級:河工所碩一 A 姓名:蕭嘉俊 學號: M Fundamental solution 自由空間之格林函數.
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
第一章 信號與系統初論 信號的簡介與DSP的處理方式。 系統特性與穩定性的判定方法。 以MATLAB驗證系統的線性、非時變、因果等特性。
CH22 可靠性加速測試方法 目的 基本假設 加速試驗模式 Inverse Power Model
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
BEM 特論 - 第一次討論 指導教授 : 陳正宗 終身特聘教授 指導學長 : 高聖凱、謝祥志、林羿州 學生 : 吳建鋒 日期 :2015/6/16 Fundamental Solution Green’s Function Green’s Theorem.
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 強健控制設計使用 MATLAB 李達生.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
: Fast and Easy Data Compressor ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10043: Fast and Easy Data Compressor 解題者:葉貫中 解題日期: 2007 年 3.
7.1 背景介紹 7.2 多解析度擴展 7.3 一維小波轉換 7.4 快速小波轉換 7.5 二維小波轉換 7.6 小波封包
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
Fourier Series. Jean Baptiste Joseph Fourier (French)(1763~1830)
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
國家地震工程研究中心 National Center for Research on Earthquake Engineering 1 國立台灣海洋大學 河海工程學系 耐震設計 ( 一 ) 單自由度結構之強迫振動 鍾立來.
冷凍空調自動控制 - Laplace Transform 李達生. Focusing here … 概論 自動控制理論發展 自控系統設計實例 Laplace Transform 冷凍空調自動控制 控制系統範例 控制元件作動原理 控制系統除錯 自動控制理論 系統穩定度分析 系統性能分析 PID Controller.
: Ahoy, Pirates! ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11402: Ahoy, Pirates! 解題者:李重儀 解題日期: 2008 年 8 月 26 日 題意:有一個海盜島有 N 個海盜,他們的編號 (id)
結構學(一) 第七次作業 97/05/15.
Fugacity Coefficient and Fugacity
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
7.4 Lookback Options 指導教授:戴天時 報告者:陳博宇. 章節結構 Floating Strike Lookback Black-Scholes-Merton Equation Reduction of Dimension Computation.
資料結構實習-一 參數傳遞.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
1 Numerical Methods 數值方法. 2 What is Numerical Methods?
國家地震工程研究中心 National Center for Research on Earthquake Engineering 1 國立台灣海洋大學 河海工程學系 耐震設計 ( 一 ) 單自由度無阻尼結構之 強迫振動 鍾立來.
Chapter 3 Entropy : An Additional Balance Equation
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
1 Derivation of stiffness and flexibility for rods beams by using dual integral equations 指導教授:陳正宗 學生姓名:周克勳 學號: M National Taiwan Ocean University.
Chapter 10 m-way 搜尋樹與B-Tree
: Function Overloading ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11032:Function Overloading 解題者:許智祺 解題日期: 2007 年 5 月 8 日 題意:判對輸入之數字是否為.
演算法課程 (Algorithms) 國立聯合大學 資訊管理學系 陳士杰老師 Course 7 貪婪法則 Greedy Approach.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
中華大學 資訊工程系 Fall 2002 Chap 4 Laplace Transform. Page 2 Outline Basic Concepts Laplace Transform Definition, Theorems, Formula Inverse Laplace Transform.
計算機概論 第6章 數位邏輯設計.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
冷凍空調自動控制 - 系統性能分析 李達生. Focusing here … 概論 自動控制理論發展 自控系統設計實例 Laplace Transform 冷凍空調自動控制 控制系統範例 控制元件作動原理 控制系統除錯 自動控制理論 系統穩定度分析 系統性能分析 PID Controller 自動控制實務.
連續隨機變數 連續變數:時間、分數、重量、……
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 1 First-Order Differential Equations A differential.
Chapter 11 偏微分方程式(Partial Differential Equations)
Discrete Mathematics Section 3.7 Applications of Number Theory 大葉大學 資訊工程系 黃鈴玲.
2013/06/13 Page 1 複變數邊界積分方程推導 National Taiwan Ocean University MSVLAB Department of Harbor and River Engineering Date: June, 13, 2013 Student: Jia-Wei.
微分器與積分器 類比電子實驗 單元二 教材投影片放在
Presentation transcript:

Chapter 5 Laplace Transforms 拉普拉斯轉換乃算子演算法(operational calculus),它將微積分演算變成代數演算.(為特殊的傅立葉轉換) 拉普拉斯轉換在工程上用於機械以及電力的驅動力問題,特別是當驅動力為不連續,脈衝或是正弦,餘弦及更複雜的周期性函數. 拉普拉斯轉換可直接解問題,求解初值問題時無需先求通解,且解非齊次微分方程時亦無需先求對應之齊次方程式之解. 偏微分方程式也能以拉普拉斯轉換處理. Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms The Laplace transform £[f(t)] of a function f(t) is defined to be £[f(t)] £[f(t)] = F(s) £-1[F(s)] = f(t) The Laplace transform of f(t) = t is If s > 0 £[f(t)] £(tn) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms The Laplace transform of f(t) = cos(wt) is £[f(t)] 利用分部積分 If s > 0 £[cos(wt)] £[sin(wt)] 同理可證 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Theorem : 1. £[f(t)+g(t)] = £[f(t)]+ £[g(t)] Whenever all three Laplace transform exist £(eiwt) = £(coswt + i sinwt) = £(coswt)+ i£(sinwt) 2. For any real number a, £[af(t)] = a£[f(t)] Whenever both sides exist 3. £-1[F(s)+G(s)] = £-1[F(s)]+ £-1[G(s)] 4. £-1[aF(s)] = a£-1[F(s)] Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms f(t) = £[f(t)] £[f(t)] {£[f(t)]}2 Let x = r cosθ , y = r sin θ £[f(t)] Gamma function : Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Rule 1: if then £[f(t)] = F(s) £[eatf(t)] = F(s-a) For s > a £[cos(wt)] £[eatcos(wt)] Rule 2: Let a be a positive constant. Let f(t) be given, with f(t) = 0 if t < 0. Define g(t) by g(t) = f(t-a), then £[g(t)] = e-as £[f(t)] f(t) g(t) t a t Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Unit step function Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Unit step function Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Dirac’s Delta function 以兩個單位階梯函數來表示 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms 函數 f (t) 其存在拉普拉斯轉換的充分條件為存在正實數 M 與 α , 使得在任何 t  0之下有 Rule 3: if for t  t0, f(t) is continuous for t  0, and f ‘(t) is piecewise continuous on [0, k] for every k > 0, then £[f ’(t)] = s £[f (t)]-f (0) For s > α £[cos(wt)] £[sin(wt)] = £ = £ {s £[cos(wt)]-cos (0)} Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Rule 4: £[f (n)(t)] = sn £[f (t)]-sn-1f (0)-sn-2f ’(0)- ……..-f (n-1)(0) Solve the initial value problem : y’’- 4y = t ; y(0) = 1, y’(0) = -2 £(y’’) - 4£(y) = £(t) £(t) = By rule 4 : £(y’’) = s2£(y) – sy(0) – y’(0) = s2 £(y) – s + 2 s2 £(y) – s + 2 - 4 £(y) = £(y) = Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms The Laplace transform of f(t) = cos(wt) 則 £[cos(wt)] Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms The Laplace transform of f(t) = sin2t 則 Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Rule 5: if f (t + ω) = f (t), so that f (t) has period ω, then Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Rule 6: 求 f (t) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms 解初值微分方程式問題 a, b 為常數, r(t)為輸入(驅動力), y(t)為輸出(系統的響應) Step 1 : 取Laplace, 令 Subsidiary equation (輔助方程式) Step 2 : Transfer function (轉移函數) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms 解初值微分方程式問題 若 Step 3 : Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Inverse Laplace Transforms Consider the problem of finding , where P(s) and Q(s) are polynomials Having no common factor and Q(s) has higher degree than P(s). Heaviside’s formulas Case 1 : If Q(s) contains an unrepeated linear factor (s-a), then f(t) contains the term where Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Inverse Laplace Transforms Case 2 : If k  2 and Q(s) contains the linear factor (s-a)k, but not (s-a)k+1 , then the corresponding term in f(t) is where Case 3 : If Q(s) contains the unrepeated quadratic factor (s-a)2+b2, then f(t) contains the terms In which r is the real part of H(a+ib), i is the imaginary part of H(a+ib) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Inverse Laplace Transforms Case 4 : If Q(s) contains the quadratic factor [(s-a)2+b2]2, but not [(s-a)2+b2]3 then f(t) contains the terms In which r is the real part of H(a+ib), i is the imaginary part of H(a+ib) r is the real part of H’(a+ib),  i is the imaginary part of H’(a+ib) Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Inverse Laplace Transforms Solve Q(s) has unrepeated linear factor (s-5) and (s+1), and an unrepeated quadratic factor (s2-2s+5), which is (s-1)2+4. For (s-5) f(t) has a form For (s+1) f(t) has a form For (s-1)2+4  f(t) has a form Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Convolution theorem If and , then Commutative property : Find and and Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Fourier Sine Transforms Suppose that f(x) is defined on [0, ]. We define the Fourier sine transform to be If Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Fourier Sine Transforms Theorem 1. 2. for any constant  Let f(x) and f ’(x) be piecewise continuous on [0,]. Assume also that limx  f(x) = limx  f ‘(x) = 0, then Proof Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Fourier Cosine Transforms Suppose that f(x) is defined on [0, ]. We define the Fourier cosine transform to be If Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Fourier Cosine Transforms Theorem 1. 2. for any constant  Let f(x) and f ’(x) be piecewise continuous on [0,]. Assume also that limx  f(x) = limx  f ‘(x) = 0, then Proof --- Homework Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Fourier Transforms Definition : 1. 2. for any constant  3. If and are sectionally continuous on [-,], then Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 5 Laplace Transforms Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung