Resolving the 180-degree Ambiguity via Pseudo-Current Method G. Allen Gary MSFC/NSSTC REFERENCES on the Pseudo-Jz Method: T. R. Metcalf, K. D. Leka, Graham.

Slides:



Advertisements
Similar presentations
Summary of 2008 Science Team Meeting. Collaboration With Dr. Wiegelmann 1. NLFFF extrapolation, leading person: Ju Jing. Objective: adapt codes to BBSO.
Advertisements

2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
Lunar Results Hybrid code. Initial condition Amplitude of dipole for the moon= 0 Lunar Radius=16.9 (unit of length) Maximum time = 200(inverse of gyro.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Resolving the 180 Degree Ambiguity in Vector Magnetic Fields T. Metcalf.
Local Data-driven MHD Simulations of Active Regions W.P. Abbett MURI 8210 Workshop Mar 2004.
The Change of Magnetic Inclination Angles Associated with Flares Yixuan Li April 1,2008.
Changes of Magnetic Structure in 3-D Associated with Major Flares X3.4 flare of 2006 December 13 (J. Jing, T. Wiegelmann, Y. Suematsu M.Kubo, and H. Wang,
Stokes Inversion 180  Azimuth Ambiguity Resolution Non-linear Force-free field (NLFFF) Extrapolation of Magnetic Field Progress in Setting up Data Processing.
Magnetic Field and Heating of the Corona Valentyna Abramenko and Vasyl Yurchyshyn Big Bear Solar Observatory.
Antennas Hertzian Dipole –Current Density –Vector Magnetic Potential –Electric and Magnetic Fields –Antenna Characteristics.
CHAPTER 4 Coordinate Geometry and Traverse Surveying
Starting with …. BE (TELECOM) IV What is current ? current is a flow of electric charge What is density ? Density is a property of matter that is unique.
Statistical properties of current helicity and twist distribution in the solar cycle by high resolution data from SOT/SP on board Hinode K. Otsuji 1),
Gravity I: Gravity anomalies. Earth gravitational field. Isostasy.
Comparison on Calculated Helicity Parameters at Different Observing Sites Haiqing Xu (NAOC) Collaborators: Hongqi, Zhang, NAOC Kirill Kuzanyan, IZMIRAN,
1 Modeling maps a physical process to a mathematical representation (e.g. equations) that can be solved. Any physical process is infinitely complex (atom.
Coronal Mass Ejection As a Result of Magnetic Helicity Accumulation
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
© Cambridge University Press 2013 Thomson_alphaem.
© Cambridge University Press 2013 Thomson_Fig
Graphing With Coordinates
Practical Calculation of Magnetic Energy and Relative Magnetic Helicity Budgets in Solar Active Regions Manolis K. Georgoulis Research Center for Astronomy.
Graphing Quadratic Functions Chapter 2 – Section 2.
Azimuth disambiguation of solar vector magnetograms M. K. Georgoulis JHU/APL Johns Hopkins Rd., Laurel, MD 20723, USA Ambiguity Workshop Boulder,
On the Structure of Magnetic Field and Radioemission of Sunspot-related Source in Solar Active Region T. I. Kaltman, V. M. Bogod St. Petersburg branch.
Observation on Current Helicity and Subsurface Kinetic Helicity in Solar Active Regions Gao Yu Helicity Thinkshop Main Collaborators: Zhang, H.
New options for the new D1 magnet Qingjin Xu
ConcepTest 19.1a Magnetic Force I 1) out of the page 2) into the page 3) downward 4) to the right 5) to the left A positive charge enters a uniform magnetic.
© The Visual Classroom x y Day 1: Angles In Standard Position  terminal arm initial arm standard position  initial arm 0 º terminal arm x y non-standard.
Evolutionary Characteristics of Magnetic Helicity Injection in Active Regions Hyewon Jeong and Jongchul Chae Seoul National University, Korea 2. Data and.
IE-OR Seminar April 18, 2006 Evolutionary Algorithms in Addressing Contamination Threat Management in Civil Infrastructures Ranji S. Ranjithan Department.
8.1 Induced Emf p. 300 Magnetism, EMF, and Electric Current An Englishman, Michael Faraday ( ) and an American, Joseph Henry ( ), working.
Calibration of Solar Magnetograms and 180 degree ambiguity resolution Moon, Yong-Jae ( 文 鎔 梓 ) (Korea Astronomy and Space Science Institute)
© Cambridge University Press 2013 Thomson_Fig
Spectral Line Performance Using Inversion Codes J. Graham, A. Norton, S. Tomczyk, A. Lopez Ariste, H. Socas-Navarro, B. Lites NCAR/HAO Goal: Characterize.
9 th CAA Cross-Calibration Workshop, Jesus College, Cambridge, UK, March /17 CAA Graphics: Pre-generated/On-demand Panels and Cross-Calibration.
A Method for Solving 180 Degree Ambiguity in Observed Solar Transverse Magnetic Field Huaning Wang National Astronomical Observatories Chinese Academy.
BBSO 2007 Science Planning. Focal Plane Instruments AO (Wenda, Nicolas, Deqing, Patricia and Park) AO (Wenda, Nicolas, Deqing, Patricia and Park) IRIM.
Extrapolating Coronal Magnetic Fields T. Metcalf.
§5.3.  I can use the definitions of trigonometric functions of any angle.  I can use the signs of the trigonometric functions.  I can find the reference.
Angles and the Unit circle
Hertzian Dipole Current Density Vector Magnetic Potential
Drawing Angles in Standard Position
© Cambridge University Press 2011
5.2 Understanding Angles terminal arm q initial arm standard position
4D Gravity Inversion Hyoungrea Bernard Rim
Day 1: Angles In Standard Position
Random Variables and their Properties
ივანე ჯავახიშვილის სახელობის
Locate Points on a Coordinate Plane
Two angles in standard position that share the same terminal side.
Do Now: A point on the terminal side of an acute angle is (4,3)
New Iterative Method of the Azimuth Ambiguity Resolution
The horizontal number line is called the ______. x-axis
8.6 Vectors in Space.
Thomson_eeWWtgc © Cambridge University Press 2013.
Unit 7: Trigonometric Functions
Thomson_atlascmsEventsAlt
Outline Derivatives and transforms of potential fields
ALGEBRA I - SECTION 8-5 (Factoring x^2 + bx + c)
Properties of Trig Fcts.
Magnetic Configuration and Non-potentiality of NOAA AR10486
Thomson_CandP © Cambridge University Press 2013.
Properties of the Trigonometric Functions
The Geometric Distributions
Thomson_AFBCartoon © Cambridge University Press 2013.
Properties of the Trigonometric Functions
Section 4.7.
Moments of Random Variables
Presentation transcript:

Resolving the 180-degree Ambiguity via Pseudo-Current Method G. Allen Gary MSFC/NSSTC REFERENCES on the Pseudo-Jz Method: T. R. Metcalf, K. D. Leka, Graham Barnes, Bruce W. Lites, Manolis K. Georgoulis, A. A. Pevtsov, K. S. Balasubramaniam, G. Allen Gary, Ju Jing, Jing Li, Y. Liu, H. Wang, Valentyna, Vasyl Yurchyshyn,and Y.-J. Moon, An Overiew of Existing Algorithms for Resolving the 180-degree Ambiguity in Vector Magnetic Fields: Quantiitative Tests with Synthetic Data, Solar Phys., 2006, 237, 267 G. Allen Gary and Pascal Démoulin, Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions, Ap. J., 1995, v445, p982. G. Allen Gary and Pascal Démoulin, Electric Current Systems in Solar Active Regions ASP Conf. Series, 1994,v 68, 171 Sac Peak Workshop/NSO, 1993,'Solar Active Region Evolution- Comparing Models with Observations', eds. K. S. Balasubramaniam and George Simon. Section 10 in Numerical Recipes by W. H.Press, B. P. Flannery, S. A. Teukosky, and W. T. Vetterling (New York: Cambridge University Press), 1986, pp (Powell Method) 2 nd Azimuth Ambiguity Resolution Workshop, SDO/HMI-CSAC Boulder, CO October 4-6, 2006

Pseudo-Current Method F[j z 2 ] The Pseudo-Current Method of analysis minimizes the vertical electric current distribution using a non-linear least-square multi-dimensional minimization algorithm :  F [j z 2 ] /  p =  [   j z 2 (x,y) dx dy] /  p where  j z =  By/  x -  Bx/  y 2 12 Acute Angle Rule wrt New Direction

Generation of the Reference Field Pseudo Currents : Wires with cosine function profiles of variable width, location, and maximum current density as parameters - P i =P[x i,y i,width i,Jz i max ] Potential Field + Reference Field (x i,y i )

Define the j z in terms of an ambiguity parameter  i,j : F[j z 2 ] =  2 /4  j=2 N-1  j= 2 N-1 [  i+1,j  y i+1,j |B y i+1,j | -  i-1,j  y i-1,j |B y i-1,j | -  i,j+1  y i,j+1 |B x i,j+1 | +  i,j-1  y i,j-1 |B x i,j-1 | ] 2  i  j Where  is the quadrant parameter  =(1,1) or (1,-1):  i,j = B x i, j B y i,j / ( |B x i,j | | B y i,j | ) B x i, j =  i,j  y i,j |B x i,j | B y i, j =  i,j  y i,j |B y i,j |  i,j = Ambiguity Parameter IV III III i,j i+1,j The Approach-Minimize F[j z 2 ]

FIN