LE 7-2 Hydrophilic head Hydrophobic tail WATER. LE 7-3 Hydrophilic region of protein Hydrophobic region of protein Phospholipid bilayer.

Slides:



Advertisements
Similar presentations
Parts of the Cell.
Advertisements

Lysosomes: Digestive Compartments
Figure 6-01.
Chapter 4 Plasma membrane, nucleus and ribosomes.
The Endomembrane System
-Chapter 7 –The Cell Answer the “Key Concept” Questions for Each Section. Period 1 Lab (Quiz) date = Wednesday November 12 Test Date= Friday November 14.
Announcements ● Tutoring Center SCI I, 407 M 12-3, 5:30-6:30; W 8-9, 5:30-6:30, Th 8-12, 6-7; F 8-9 ● MasteringBiology Assignment due Tuesday 4/19 ● Exam.
The Microscopic World of Cells
The Endoplasmic Reticulum
Tour of the Cell. Robert Hooke ( ) Robert Hooke : examined thinly sliced cork and coined term “cell”
Copyright © 2006 Cynthia Garrard publishing under Canyon Design Chapter 6 - Cells Overview: The Importance of Cells All organisms are made of cells The.
Ch 4 Tour of the Cell. Microscopic Worlds Microscopes led to the discovery of the cell – Light microscopes – Cell membrane - yes – Large macromolecules.
Ch.3 Cells 1.Plasma Membrane 2.Cytoplasm Entire contents of cell between P.M. and nucleus. 3.Nucleus or Nuclear Area Contains DNA, the genetic material.
The Microscopic World of Cells
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
A tour of the cell.
CHAPTER 4 CELLS.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings CHAPTER 6 THE STRUCTURE AND FUNCTION OF THE CELL All living things are composed.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction – Chapter 4
4 A Tour of the Cell.
Click here to see The Inner life of the cell. I. Cell Structure + Function Ch. 3 pg. 47 A. Cell Theory 1.All living things are made of cells 2.All cells.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Tour of The Cell. Learning Targets  I can distinguish between prokaryotic and eukaryotic cells  I can draw a prokaryotic cell, a plant cell and an animal.
Fig. 6-7 TEM of a plasma membrane (a) (b) Structure of the plasma membrane Outside of cell Inside of cell 0.1 µm Hydrophilic region Hydrophobic region.
Cell Structure and Function
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm
Ch. 7 Diagrams Cell Structure. Figure m 1 m 0.1 m 1 cm 1 mm 100  m 10  m 1  m 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins.
Fig m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria.
Copyright © 2009 Pearson Education, Inc.. Lectures by Gregory Ahearn University of North Florida Chapter 4 Cell Structure and Function.
Plasma membrane, nucleus and ribosomes
ENDURING UNDERSTANDING 2.B GROWTH, REPRODUCTION AND DYNAMIC HOMEOSTASIS REQUIRE THAT CELLS CREATE AND MAINTAIN INTERNAL ENVIRONMENTS THAT ARE DIFFERENT.
Chapter 6 A Tour of the Cell. Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 6: A Tour of the Cell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Cells.
A view of the cell: plasma membrane *All cells are membrane bound, possess ribosomes and contain DNA Red blood cell outside of cell inside of cell Hydrophobic.
CYTOLOGY & HISTOLOGY Lecture two
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
CELULA ANIMALA. Cell Size.
Lecture for Chapter 4 DNA organization Endomembrane System.
Introduction to Cells How we study cells: Two basic types: microscope
Chapter 6: Types of Cells and Cell Structures
Slide 1 of 35 Nucleus Slide 2 of 35 Nucleus (Answers) 1. Nucleolus 2. Nuclear Pore3. Chromatin 4. Inner Nuclear Membrane 5. Outer Nuclear.
Basic Unit of Life Cell Song. Principles of Cell Theory 1. Cells are basic units of life 2. Biogenesis - All Cells arise from other cells 3. Energy flow.
10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm 1 µm 100 nm 10 nm 1 nm 0.1 nm Atoms Small molecules Lipids Proteins Ribosomes Viruses Smallest bacteria Mitochondrion.
Overview of Cells Prokaryotic All bacteria Most have cell wall No membrane-bound organelles Biochemical reactions take place in cytoplasm or cell membrane.
Slide 1 lipid bilayer fluid one layer of lipids one layer of lipids Stepped Art Figure 4.3 Page 56.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Investigating Cell Structure and Function 1. Cell Theory 2. Microscopy- a. History b. Types 3. Studying cell organelles a.Cell homogenization b. Cell Fractionation.
A Tour of the Cell Chapter 6. Overview: The Importance of Cells  Cell Theory: All organisms are made of cells  The cell is the simplest collection of.
Chapter 6: A Tour of the Cell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
© 2005 Pearson Education, Inc., publishing as Benjamin Cummings
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Chapter 6 A (more detailed) Tour of the Cell. Nucleus: Chromatin v. chromosomes Nucleolus synthesizes ribosomes Nuclear pores.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Lecture #2 Cellular Anatomy. Intermediate filaments ENDOPLASMIC RETICULUM (ER) Rough ERSmooth ER Centrosome CYTOSKELETON Microfilaments Microtubules Microvilli.
WORLD OF LIVING ORGANISMS. Why has it taken too many years to reveal structure of cell? Insufficient microscobe technology Usage of observation instead.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
1 Cell Structure & Function. It wasn’t until the 1600s that scientists were able to use microscopes to observe living things.
Microscopy and the Cell. Cell Biology tools: Microscopy & Fractionation  The quality of an image depends on  Magnification, the ratio of an object’s.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Chapter 6 ~ A Tour of the Cell
Chapter 6 A Tour of the Cell.
4.2 Parts of the Eukaryotic Cell
4 A Tour of the Cell.
Modern Day Eukaryotic Cells
4.1 Introduction to the Cell pp
Presentation transcript:

LE 7-2 Hydrophilic head Hydrophobic tail WATER

LE 7-3 Hydrophilic region of protein Hydrophobic region of protein Phospholipid bilayer

LE 7-5b Viscous Fluid Unsaturated hydrocarbon tails with kinks Membrane fluidity Saturated hydro- carbon tails

LE 7-5c Cholesterol Cholesterol within the animal cell membrane

LE 7-8 EXTRACELLULAR SIDE N-terminus C-terminus CYTOPLASMIC SIDE  Helix

LE 7-15a EXTRACELLULAR FLUID Channel protein Solute CYTOPLASM

LE 7-17a Diffusion Facilitated diffusion Passive transport

LE 7-17b ATP Active transport

LE 7-17 Diffusion Facilitated diffusion Passive transport ATP Active transport

LE 6-9a Flagellum Centrosome CYTOSKELETON Microfilaments Intermediate filaments Microtubules Peroxisome Microvilli ENDOPLASMIC RETICULUM (ER Rough ER Smooth ER Mitochondrion Lysosome Golgi apparatus Ribosomes: Plasma membrane Nuclear envelope NUCLEUS In animal cells but not plant cells: Lysosomes Centrioles Flagella (in some plant sperm) Nucleolus Chromatin

LE 6-9b Rough endoplasmic reticulum In plant cells but not animal cells: Chloroplasts Central vacuole and tonoplast Cell wall Plasmodesmata Smooth endoplasmic reticulum Ribosomes (small brown dots) Central vacuole Microfilaments Intermediate filaments Microtubules CYTOSKELETON Chloroplast Plasmodesmata Wall of adjacent cell Cell wall Nuclear envelope Nucleolus Chromatin NUCLEUS Centrosome Golgi apparatus Mitochondrion Peroxisome Plasma membrane

LE 6-10 Close-up of nuclear envelope Nucleus Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Ribosome Pore complexes (TEM)Nuclear lamina (TEM) 1 µm Rough ER Nucleus 1 µm 0.25 µm Surface of nuclear envelope

LE 6-12 Ribosomes Smooth ER Rough ER ER lumen Cisternae Transport vesicle Smooth ER Rough ER Transitional ER 200 nm Nuclear envelope

LE 6-2 Measurements 1 centimeter (cm) = 10 –2 meter (m) = 0.4 inch 1 millimeter (mm) = 10 –3 m 1 micrometer (µm) = 10 –3 mm = 10 –6 m 1 nanometer (nm) = 10 –3 µm = 10 –9 m 10 m 1 m Human height Length of some nerve and muscle cells Chicken egg 0.1 m 1 cm Frog egg 1 mm 100 µm Most plant and animal cells 10 µm Nucleus 1 µm Most bacteria Mitochondrion Smallest bacteria Viruses 100 nm 10 nm Ribosomes Proteins Lipids 1 nm Small molecules Atoms 0.1 nm Unaided eye Light microscope Electron microscope

LE 6-3a Brightfield (unstained specimen) 50 µm Brightfield (stained specimen) Phase-contrast

LE 6-6 A typical rod-shaped bacterium A thin section through the bacterium Bacillus coagulans (TEM) 0.5 µm Pili Nucleoid Ribosomes Plasma membrane Cell wall Capsule Flagella Bacterial chromosome

LE 6-7 Total surface area (height x width x number of sides x number of boxes) Total volume (height x width x length X number of boxes) Surface-to-volume ratio (surface area  volume) Surface area increases while Total volume remains constant

LE 6-11 Ribosomes 0.5 µm ER Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Small subunit Diagram of a ribosome TEM showing ER and ribosomes

LE 6-14a Phagocytosis: lysosome digesting food 1 µm Plasma membrane Food vacuole Lysosome Nucleus Digestive enzymes Digestion Lysosome Lysosome contains active hydrolytic enzymes Food vacuole fuses with lysosome Hydrolytic enzymes digest food particles

LE 6-14b Autophagy: lysosome breaking down damaged organelle 1 µm Vesicle containing damaged mitochondrion Mitochondrion fragment Lysosome containing two damaged organelles Digestion Lysosome Lysosome fuses with vesicle containing damaged organelle Peroxisome fragment Hydrolytic enzymes digest organelle components

LE µm Central vacuole Cytosol Tonoplast Central vacuole Nucleus Cell wall Chloroplast

LE Nuclear envelope Nucleus Rough ER Smooth ER

LE Nuclear envelope Nucleus Rough ER Smooth ER Transport vesicle cis Golgi trans Golgi Plasma membrane

LE 6-17 Mitochondrion Intermembrane space Outer membrane Inner membrane Cristae Matrix 100 nm Mitochondrial DNA Free ribosomes in the mitochondrial matrix

LE 6-18 Chloroplast DNA Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm