DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG

Slides:



Advertisements
Similar presentations
Yhd Subsurface Hydrology
Advertisements

Approximate Analytical/Numerical Solutions to the Groundwater Transport Problem CWR 6536 Stochastic Subsurface Hydrology.
1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.
Inversion of coupled groundwater flow and heat transfer M. Bücker 1, V.Rath 2 & A. Wolf 1 1 Scientific Computing, 2 Applied Geophysics Bommerholz ,
Upscaling and effective properties in saturated zone transport Wolfgang Kinzelbach IHW, ETH Zürich.
Quantitative characterization of the pore network of a macroporous soil using µ X-ray CT Sofie Herman, department of Land Management, K.U. Leuven
Conductivity Testing of Unsaturated Soils A Presentation to the Case Western Reserve University May 6, 2004 By Andrew G. Heydinger Department of Civil.
Dongxiao Zhang Mewbourne School of Petroleum and Geological Engineering The University of Oklahoma “Probability and Materials: from Nano- to Macro-Scale”
STABILITY ANALYSIS IN PRESENCE OF WATER Pore pressures Rainfall Steady state flow and transient flow.
Soil water retention curve
Sample Scale Liquid Retention and Liquid-Vapor Interfacial Area Dani Or & Markus Tuller Dept. of Plants, Soils and Biometeorology Utah State University,
Scale-Dependent Dispersivities and The Fractional Convection - Dispersion Equation Mike Sukop/FIU Primary Source: Ph.D. Dissertation David Benson University.
Assessing the impact of a soil surface crust on simulated overland flow at the field scale. N. Chahinian (1, 2), M. Voltz (2), R. Moussa (2), G. Trotoux.
z = -50 cm, ψ = -100 cm, h = z + ψ = -50cm cm = -150 cm Which direction will water flow? 25 cm define z = 0 at soil surface h = z + ψ = cm.
1 Miller Similarity and Scaling of Capillary Properties How to get the most out of your lab dollar by cheating with physics.
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
Bruno Basso Dept. Crop, Forest and Environmental Sciences University of Basilicata, Italy Contacts Joe T Ritchie: Bruno Basso :
Alternative Modeling Approaches for Flow & Transport in Fractured Rock Douglas D. Walker, DE&S Jan-Olof Selroos, SKB Supported by Swedish Nuclear Fuel.
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
1 Next adventure: The Flow of Water in the Vadose Zone The classic solutions for infiltration and evaporation of Green and Ampt, Bruce and Klute, and Gardner.
1 Miller Similarity and Scaling of Capillary Properties How to get the most out of your lab dollar by cheating with physics.
Scale Issues in Hydrological Modelling: A Review
Uncertainty analysis and Model Validation.
Interdisciplinary Modeling of Aquatic Ecosystems Curriculum Development Workshop July 18, 2005 Groundwater Flow and Transport Modeling Greg Pohll Division.
HYDRUS_1D Sensitivity Analysis Limin Yang Department of Biological Engineering Sciences Washington State University.
Lecture ERS 482/682 (Fall 2002) Infiltration ERS 482/682 Small Watershed Hydrology.
Status report on Step1 of Task A, DECOVALEX-2011 modeling for Ventilation Experiment –modeling for Ventilation Experiment By Xiaoyan Liu, Chengyuan Zhang.
Mathematics of non-Darcy CO 2 injection into saline aquifers Ana Mijic Imperial College London Department of Civil and Environmental Engineering PMPM Research.
A Process-Based Transfer Function Approach to Model Tile Drain Hydrographs Mazdak Arabi, Jennifer Schmidt and Rao S. Govindaraju World Water & Environmental.
Groundwater Hydraulics Daene C. McKinney
Soil physics Magnus Persson. Surface tension   2·R·cos  R 2·r P1P1 P2P2 z Due to surface tension water can be held at negative pressure in capillary.
The University of MississippiNational Center for Computational Hydroscience and Engineering Rainfall runoff modeling in agricultural watershed using 2D.
Uncertainty Analysis and Model “Validation” or Confidence Building.
Multivariate Distributions of Soil Hydraulic Parameters W. Qu 1, Y. Pachepsky 2, J. A. Huisman 1, G. Martinez Garcia 3, H. Bogena 1, H. Vereecken 4 1 Institute.
Soil Physics schedule: Overview on hydraulic characteristics
Soil Physics 2010 Outline Announcements Where were we? Measuring unsaturated flow Soil water diffusivity.
Laboratoire Environnement, Géomécanique & Ouvrages Comparison of Theory and Experiment for Solute Transport in Bimodal Heterogeneous Porous Medium Fabrice.
Soil Water Tension Department of Agricultural and Biological Engineering University of Illinois at Urbana-Champaign.
Surface Water Hydrology: Infiltration – Green and Ampt Method
EVALUATION OF A FAST NUMERICAL SOLUTION OF THE 1D RICHARD’S EQUATION AND INCLUSION OF VEGETATION PROCESSES Varado N., Ross P.J., Braud I., Haverkamp R.,
GROUND WATER CONTAMINATION. IMPORTANCE OF GROUND WATER Approximately 99 percent of all liquid fresh water is in underground aquifers At least a quarter.
Variably Saturated Flow and Transport: Sorbing Solute.
Lecture 15 Soil Water (2) Soil Water Movement (1) Concept of Hydraulic Head Soil moisture Characteristics Darcy’s Law Infiltration.
Geometry Group Summer 08 Series Toon Lenaerts, Bart Adams, and Philip Dutre Presented by Michael Su May
BBC Workshop DeBilt, 18.–19. October 2004 Reconstruction of three dimensional cloud fields from two dimensional input datasets Klemens Barfus & Franz H.
ATM 301 Lecture #7 (sections ) Soil Water Movements – Darcy’s Law and Richards Equation.
The influence of Runoff on Recharge
Introduction to the TOPMODEL
Estimating Groundwater Recharge in Porous Media Aquifers in Texas Bridget Scanlon Kelley Keese Robert Reedy Bureau of Economic Geology Jackson School of.
Conclusions The states of the surface and root zoon soil moisture are considered as key variables controlling surface water and energy balances. Force-restore.
CE 3354 Engineering Hydrology Lecture 21: Groundwater Hydrology Concepts – Part 1 1.
Transient Two-dimensional Modeling in a Porous Environment Unsaturated- saturated Flows H. LEMACHA 1, A. MASLOUHI 1, Z. MGHAZLI 2, M. RAZACK 3 1 Laboratory.
Infiltration Equations Fundamental Mass Balance Equation: Darcy’s Law (z direction): Where.
4.6 INTRODUCING ‘SWAM’ (SOIL WATER ACCOUNTING MODEL)
: constants ■ Experimental data Regression Proposed constants  Olesen’s threshold water content model best predicted the tortuosity of three tested soils.
Team  Spatially distributed deterministic models  Many hydrological phenomena vary spatially and temporally in accordance with the conservation.
Soil Water Balance Reading: Applied Hydrology Sections 4.3 and 4.4
Session: CS2: Efficient Water Use in Agriculture IMPROVING WATER USE EFFICIENCY BY SOIL MOISTURE MEASUREMENT AND MODELLING Ms. Neethu. A. Dr. Santosh G.
Water in Soil Learning objectives
Hasan Nourdeen Martin Blunt 10 Jan 2017
Soil hydraulic characteristics
Darcy’s Law and Richards Equation
Infiltration and unsaturated flow (Mays p )
Ali. M. Al-Turki Hesham M. Ibrahim
Water in Soil Learning objectives
Water in Soil Learning objectives
Mathematical modeling techniques in the engineering of landfill sites.
INFILTRATION The downward flow of water from the land surface into the soil medium is called infiltration. The rate of this movement is called the infiltration.
Tracer vs. Pressure Wave Velocities Through Unsaturated Saprolite
Yalchin Efendiev Texas A&M University
Presentation transcript:

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Some Difficulties in Modeling Water and Solute Transport in Soils Ph. ACKERER IMFS STRASBOURG With the help of B. Belfort, H. Beydoun, F. Lehmann and A. Younès.

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG 0.36 km 2, m Contact: Bruno AMBROISE (IMFS) Hillslope hydrology The Ringelbach catchment

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Saturated area Discharge (from B. Ambroise, IMFS)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Hillslope hydrology Mathematical models – Darcy – Richards eq. – Soil hydraulic properties Parameter measurements – Direct methods – Indirect methods Numerical methods – Highly non linear PDEs – Very strong parameters contrasts – Long term simulation – ‘Flat’ geometry

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG (from UMR LISAH, Montpellier) Usual concepts and mathematical models __________________________________________________________________________________ Model concept

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Scale (m) Model scale Q1Q1 Continuum Mec. (Stokes, Hagen- Poiseuille, …) KTKT KLKL REV Darcy, Richards, Water retention curves, …. Usual concepts and mathematical models __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Usual mathematical models – conservation laws __________________________________________________________________________________ Mass conservation Generalized Darcy’s law Richards’ equation

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Mualem, 1976 Van Genuchten, 1981 Pore-size distribution models Usual mathematical models – Soil hydraulic properties __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Particle-size distribution (Arya & Paris, 1981) Pore radius R i : average particle radius for fraction i  b : soil density  p : particle density n : number of particle  : 1.35 – 1.40 Water content W: fraction of particle distribution Water pressure  : surface tension  : contact angle Usual mathematical models – Soil hydraulic properties __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Robbez-Masson, UMR LISAH, Montpellier

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Macropores in un-colonised and colonised soil (from Pierret et al., 2002)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Hierarchy of flow/transport models for variably-saturated structured media (after Altman et al., 1996)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG From Tuller & Or, 2001

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG New mathematical models Richard’s equation with alternative h(  ) and K(  ) Network models Alternative models Some recent concepts __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Pore-size distribution models Modified Van Genuchten, Vogel et al. (1998, 2001) Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Kosugi, 1996 Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________ Pore-scale models (Tuller & Or, 2002)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________ (a) Fitted liquid saturation for silt loam soil with biological macropores. (b) Predicted relative hydraulic conductivity. (Note that 1 J kg -1 = bar.) (from Tuller & Or, 2002) Pore-scale models (Tuller & Or, 2002)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Pedotransfer functions (Wösten, 2001) Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Soil Hydraulic Properties, h(  ) and K(  ) __________________________________________________________________________________ Smooth functions Prunty & Casey, 2002 Mualem, 1976

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Kinematic–dispersive wave model ( Di Pietro et al., 2003) Network models __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG From Pan et al., 2004 Alternative models __________________________________________________________________________________ Two-phase flow using Lattice Boltzmann approach

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Alternative models __________________________________________________________________________________ Water retention curve from Pan et al., 2004.

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Parameter estimation Spatial variability and scales __________________________________________________________________________________ Direct measurements and interpolation Indirect estimation by inverse approach

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG (Ptak, Teutsch, 1994) Spatial variability and scales __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Measurement locations Probability distribution of indicator 1 Conditioning InterpolationConditioning Interpolation Spatial variability and scales __________________________________________________________________________________ Probability distribution of indicator 2

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Probability normalization P k = P k / (  P i ) Integrated density function Spatial variability and scales __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Spatial variability and scales __________________________________________________________________________________ Experimental site in Alsace Ksat  init (30 cm)

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Spatial variability and scales __________________________________________________________________________________ Fluxes after 8 weeks Water NitrateWater Nitrate Fluxes after 16 weeks Water Fluxes after 20 weeks Nitrate

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Inverse methods __________________________________________________________________________________ Parameter identification by inverse approaches Generalized least-square approach

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Inverse methods __________________________________________________________________________________ Experimental set-up

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Computed and measured variables Inverse methods __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG ParameterInit.Est.MinMax θ r (cm 3 /cm 3 ) θ s (cm 3 /cm 3 ) α (cm -1 ) n K 1 s (cm/h) K P s (cm/h) Inverse methods __________________________________________________________________________________ Parameter estimation and validation

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG First order confidence interval Sensitivity matrix Covariance matrix Parameter uncertainty Inverse methods __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Inverse methods __________________________________________________________________________________ ParamètresKsKs K s (P) rr ss  n KsKs 1-0,4490,7790,1030,3360,148 K s (P) 1-0,3250,473-0,5910,212 rr 1-0,082-0,0180,543 ss 10,162-0,131  1-0,707 n1 Correlation matrix

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Inverse methods __________________________________________________________________________________ Parameters and computed variable p c,1 Y c,1 Min(J(p)) Virtual data set P, y(p) Measurements: Y m,1 = y(p) +  1 Measurements: Y m,n = y(p) +  n Parameters and computed variable p c,n Y c,n Min(J(p)) Measurements: Y m,i = y(p) +  i Parameters and computed variable p c,i Y c,i Min(J(p)) Exp. Covariance matrix First Monte Carlo approach

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Virtual data set P, y(p) Inverse methods __________________________________________________________________________________ Measurements: Y m,1 = Y o +  1 Parameters and computed variable p c,1 Y c,1 Min(J(p)) Measurements: Y m,n = Y o +  n Parameters and computed variable p c,n Y c,n Min(J(p)) Exp. Covariance matrix Parameters and computed variable p c,i Y c,i Min(J(p)) Measurements: Y m = Y o +  i Second Monte Carlo approach Observations Y o = y(p) +  

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Comparison between 1er order and Monte Carlo Approaches Inverse methods __________________________________________________________________________________

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG Conclusions __________________________________________________________________________________ Many challenges remain: Understanding of processes and their mathematical modelling Parameter scaling: from measurements to element size Soil heterogeneity description Accurate of numerical codes will be of great help

DYNAS 04 Workshop Ph. Ackerer, IMFS - STRASBOURG References Frontis Workshop on Unsaturated-Zone Modeling: Progress, Challenges and Applications, Wageningen, The Netherlands 3-5 October Arya & Paris, Soil Sci. Soc. Am. J.,1981 Binayak P. Mohanty, Water Res. Res, 1999 Di Pietro et al., J. of Hydrology,2003 Pan et al., Water Res. Res., 2004 Pierret et al., Géoderma, 2002 Prunty & Casey, Vadose Zone J, 2002 Tulle & Or, Vadose Zone J, 2002 Vogel et al., Adv. Water Res., 2001 Vogel & Roth, J of Hydrology, 2003 Wösten, J. of Hydrology., 2001