“minimal” galvanic cells

Slides:



Advertisements
Similar presentations
Electrochemical Cells. Definitions Voltaic cell (battery): An electrochemical cell or group of cells in which a product-favored redox reaction is used.
Advertisements

19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Hydrogen electrolysis Hydrogen electrolysis is the process of running an electrical current through water (H 2 O) and separating the hydrogen from the.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18.
Electron-Transfer Reactions Cu 2+ (aq) + Zn(s)  Cu(s) + Zn 2+ (aq)
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electron-Transfer Reactions Cu 2+ (aq) + Zn(s)  Cu(s) + Zn 2+ (aq)
Electrolysis non-spontaneous reaction is caused by the passage of an electric current through a solution.
ELECTROLYSIS. Compare and contrast voltaic (galvanic) and electrolytic cells Explain the operation of an electrolytic cell at the visual, particulate.
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 19 Oxidation–Reduction (Redox)
Electrochemistry Chapter 19.
Predicting Spontaneous Reactions
Electrochemistry Ch. 17. Electrochemistry Generate current from a reaction –Spontaneous reaction –Battery Use current to induce reaction –Nonspontaneous.
The End is in Site! Nernst and Electrolysis. Electrochemistry.
Electrolysis. Drill What is the color of the following ion in solution? Nickel Ans: green Copper Ans: blue Cobalt Ans: pink Iron (II) Ans: light blue.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Applications of Redox. Review l Oxidation reduction reactions involve a transfer of electrons. l OIL- RIG l Oxidation Involves Loss l.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chemistry 100 – Chapter 20 Electrochemistry. Voltaic Cells.
Chapter 20: Electrochemistry
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Electrochemistry Experiment 12. Oxidation – Reduction Reactions Consider the reaction of Copper wire and AgNO 3 (aq) AgNO 3 (aq) Ag(s) Cu(s)
Electrochemistry. Table of Reduction Potentials Measured against the Standard Hydrogen Electrode.
 Deals with the relation of the flow of electric current to chemical changes and the conversion of chemical to electrical energy (Electrochemical Cell)
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Electrochemistry - the Science of Oxidation-Reduction Reactions 1.Constructing electrochemical cells - sketching cells which carry out redox reaction -
Electrochemisty Electron Transfer Reaction Section 20.1.
Topic 19 Oxidation and reduction
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Electrolysis.
REDOX Part 2 - Electrochemistry Text Ch. 9 and 10.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Galvanic Cell: Electrochemical cell in which chemical reactions are used to create spontaneous current (electron) flow.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 18: Introduction to Electrochemistry CHE 321: Quantitative Chemical Analysis Dr. Jerome Williams, Ph.D. Saint Leo University.
18.8 Electrolysis 2 Types of electrochemistry 1.Battery or Voltaic Cell – Purpose? 2.Electrolysis - forces a current through a cell to produce a chemical.
Nernst Equation Walther Nernst
Hour Exam II Wednesday, March 15 7:00 – 9:00 pm 103 Mumford HallAQG, AQI AllenAQJ BlairAQF 150 Animal Science FisherAQB, AQC KoysAGD PearsonAQA conflict.
Electrochemistry Cells and Batteries.
Electrolysis.  Running a galvanic cell backwards.  Put a voltage bigger than the cell potential on the wire and reverse the direction of the redox reaction.
Brain Warmup Half-Reaction ℰ ° (V) Ag + + e -  Ag 0.80 Cu e -  Cu 0.34 Zn e -  Zn-0.76 Al e -  Al-1.66 What is ℰ ° for each of the.
Electrochemistry The Study of the Interchange of Chemical and Electrical Energy.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Electrochemistry Experiment 12. Oxidation – Reduction Reactions Consider the reaction of Copper wire and AgNO 3 (aq) AgNO 3 (aq) Ag(s) Cu(s)
Chapter There is an important change in how students will get their AP scores. This July, AP scores will only be available online. They will.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Nernst Equation  G = -nF  cell  G o = -nF  o cell  G =  cell =  o cell - RT nF ln Q standard non-standard GoGo + RT ln Q.
Electrolysis 3.7 Electrolysis…. Electrolysis Use of electrical energy to produce chemical change...forcing a current through a cell to produce a chemical.
Electrochemistry.
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
Ch. 20: Electrochemistry Lecture 4: Electrolytic Cells & Faraday’s Law.
H.W. # 24 Study pp (sec ) Ans. ques. p. 883 # 93a,95c,97,104,105,
“minimal” galvanic cells
Using chemistry to generate electricity
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
“minimal” galvanic cells
Electrochemistry.
Chapter 20 Electrochemistry
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
Electrochemistry.
Chapter 20 Electrochemistry
Electrochemistry.
Presentation transcript:

“minimal” galvanic cells only need reactants Cu Cu2+(aq) + 2e-  Cu(s) o = 0.34 V a) oxidation Zn Zn2+(aq) + 2e-  Zn(s) Zn  Zn2+ + 2e-  = 0.76 V o = -0.76 V b) oxidation H+ 2H+(aq) + 2e-  H2(g) o = 0.00 V reduction 2H+ (aq) + Zn (s)  Zn2+ (aq) + H2(g) 0 = .76 V Q =  = very large

Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g)  spontaneous galvanic cell cell < 0 G > 0 non-spontaneous electrolytic cell 2 H2(g) + O2(g)  2 H2O(l) G = -474 kJ spontaneous redox reaction: H  1+ O  2-

Electrolytic Cells 2 H2O(l)  2 H2(g) + O2(g) G = 474 kJ oxygen half-cell: H2O  O2 2 H2O  O2 + 4 H+ + 4 e- a) oxidation b) reduction reaction a) anode b) cathode

Electrolytic Cells 2 H2O(l)  2 H2(g) + O2(g) G = 474 kJ hydrogen half-cell: H2O  H2 2 H2O + 2e-  H2 + OH- 2 reduction reaction cathode

Electrolytic Cells 2 H2O  O2 + 2 H2 2 H2O  O2 + 4 H+ + 4 e- anode oxidation: 2 H2O  O2 + 4 H+ + 4 e- anode 2( ) reduction: 2 H2O + 2e-  H2 + 2 OH- cathode ____________________________________ 6 H2O  O2 + 2 H2 + 4H+ + 4 OH- 2 H2O  O2 + 2 H2

Electrolysis of water - battery e- e- anode cathode oxidation + battery e- Pt electrodes e- anode cathode oxidation reduction 2H2O  O2+ 4H++ 4e- 4H2O + 4e- 2H2 + 4OH- acid base 1 mol gas 2 mol gas

Electrolysis of water 2.5 amp Power source  3.2 g O2 current = amperes (A) = coulombs/sec (C/s) current and time charge mol e- mol product gram product A(C/s) x s x 1mol e- 96,500 C x mol product mol e- x g product mol product

Electrolysis of water 2 H2O  O2 + 4 H+ + 4 e- 2.5 A, 3.2 g O2 current and time charge mol e- mol product gram product (C/s) x s x mol e- C x mol O2 mol e- mol O2 x g O2 = g O2 1 mol e- 96500 C 1 4 2.5 A 32.0 g/mol 3.2

Electrolysis of water 2 H2O  O2 + 4 H+ + 4 e- 2.5 A, 3.2 g O2 1 mol O2 x 32 g O2 4 mol e- x 1 mol O2 96500 C = 1 mol e- 38600 C 3.2 g O2 x 2.5 C x s s = 38600 C s = 15440 s 15440 s x 1 min x 60 s 1 hr 60 min = 4.3 hr

Electroplating Cu2+ + 2e-  Cu o = 0.34 V anode cathode Cu(s) oxidation reduction Cu(s)  Cu2+(aq) + 2e- Cu2+(aq) + 2e-  Cu(s) Cu2+ + 2e-  Cu o = 0.34 V

Electroplating anode cathode Cu(s)  Cu2+(aq) + 2e- reduction oxidation Cu(s)  Cu2+(aq) + 2e- Cu2+(aq) + 2e- Cu(s) 0.75 A for 25 min. deposits 0.37 g Cu atomic mass of Cu =

Electroplating Cu2+(aq) + 2e- Cu(s) 0.75 A for 25 min deposits 0.37 g Cu A (C) s x s x 1 mol e- 96500 C x 1 mol Cu 2 mol e- x g Cu mol Cu

Electroplating 0.75(C) s x 25 min x 60s min = 1.125 x 103 C x 1 mol e- 96500 C = 1.17 x 10-2 mol e- 1.17 x 10-2 mol e- x 1mol Cu 2mol e- =5.83 x 10-3mol Cu 0.37 g Cu = 63.5 g mol atomic mass Cu 5.8x10-3 mol Cu