Introduction 1 Lecture 6 Application Layer (HTTP) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.

Slides:



Advertisements
Similar presentations
HTTP Cookies. CPSC Application Layer 2 User-server state: cookies Many major Web sites use cookies Four components: 1) cookie header line of HTTP.
Advertisements

CSE534 – Fundamentals of Computer Networks Lecture 11: HTTP/Web (The Internet’s first killer app) Based on slides from Kurose + Ross, and Carey Williamson.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
HyperText Transfer Protocol (HTTP)
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Chapter 2: Application Layer
HyperText Transfer Protocol (HTTP) Computer Networks Computer Networks Spring 2012 Spring 2012.
9/16/2003-9/18/2003 The Application Layer and Java Programming September 16-18, 2003.
Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Week 11: Application Layer1 Week 11: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Web, HTTP and Web Caching
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
1 K. Salah Module 2.1: Application Layer Application-level protocols provide high-level services –Web and HTTP –DNS –Electronic mail –Remote login –FTP.
Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 4.
Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  Focus on client-server.
2/9/2004 Web and HTTP February 9, /9/2004 Assignments Due – Reading and Warmup Work on Message of the Day.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer World Wide Web (WWW). Introduction 1-2 Internet protocol stack (recap) r application: supporting network applications m FTP,
Trying out HTTP (client side) for yourself
Google App Engine Chien-Chung Shen
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Course on Computer Communication and Networks Lecture 2-cont Chapter 2 (part a): applications, http EDA344/DIT 420, CTH/GU.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Mail (smtp), VoIP (sip, rtp)
2: Application Layer1 CS 4244: Internet Software Development Dr. Eli Tilevich.
Application Layer 2 Figures from Kurose and Ross
Rensselaer Polytechnic Institute Shivkumar Kalvanaraman, Biplab Sikdar 1 The Web: the http protocol http: hypertext transfer protocol Web’s application.
20-1 Last time □ NAT □ Application layer ♦ Intro ♦ Web / HTTP.
2: Application Layer1 Internet apps: their protocols and transport protocols Application remote terminal access Web file transfer streaming multimedia.
Week 11: Application Layer1 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,…
CS 372 – introduction to computer networks* Wednesday June 30
© Janice Regan, CMPT 128, Jan 2007 CMPT 371 Data Communications and Networking HTTP 0.
2: Application Layer1 Web and HTTP First some jargon Web page consists of base HTML-file which includes several referenced objects Object can be HTML file,
2: Application Layer1 Chapter 2 Application Layer Part 2: Web & HTTP These slides derived from Computer Networking: A Top Down Approach, 6 th edition.
1 Computer Communication & Networks Lecture 28 Application Layer: HTTP & WWW p Waleed Ejaz
1 HTTP EECS 325/425, Fall 2005 September Chapter 2: Application layer r 2.1 Principles of network applications m app architectures m app requirements.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 8 Omar Meqdadi Department of Computer Science and Software Engineering University of.
Application Layer 2-1 Chapter 2 Application Layer 2.2 Web and HTTP.
CIS679: Lecture 13 r Review of Last Lecture r More on HTTP.
2: Application Layer 1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April.
Dr. Philip Cannata 1 The Web and HTTP. Dr. Philip Cannata 2 Application Layer 2-2 Chapter 2 Application Layer Computer Networking: A Top Down Approach.
Application Layer 2-1 Lecture 4: Web and HTTP. Web and HTTP First, a review… web page consists of objects object can be HTML file, JPEG image, Java applet,
2: Application Layer 1 Application layer  Principles of network applications  Web and HTTP  FTP, TFTP  TELNET  Electronic Mail  SMTP, POP3, IMAP.
Important r There will be NO CLASS on Friday 1/30/2015! r Please mark you calendars 1.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Advance Computer Networks Lecture#05 Instructor: Engr. Muhammad Mateen Yaqoob.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Introduction 1-1 Lecture 5 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 7 Omar Meqdadi Department of Computer Science and Software Engineering University of.
EEC-484/584 Computer Networks Lecture 4 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Week 11: Application Layer 1 Web and HTTP r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists.
27.1 Chapter 27 WWW and HTTP Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
© Janice Regan, CMPT 128, Jan 2007 CMPT 371 Data Communications and Networking HTTP 0.
Lecture 5 Internet Core: Protocol layers. Application Layer  We will learn about protocols by examining popular application-level protocols  HTTP 
2: Application Layer 1 Chapter 2 Application Layer These ppt slides are originally from the Kurose and Ross’s book. But some slides are deleted and added.
Application Layer Dr. Adil Yousif Lecture 2 CS.
Block 5: An application layer protocol: HTTP
HTTP request message: general format
Internet transport protocols services
Session 4 INST 346 Technologies, Infrastructure and Architecture
Computer Communication & Networks
CS 5565 Network Architecture and Protocols
Application Layer Part 1
Chapter 2 Application Layer
Presentation transcript:

Introduction 1 Lecture 6 Application Layer (HTTP) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department Fall 2011 CPE 400 / 600 Computer Communication Networks

Chapter 2: Application layer 2.1 Principles of network applications  app architectures  app requirements 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail  SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 Socket programming with TCP 2.8 Socket programming with UDP Application 2

HTTP connections non-persistent HTTP  at most one object sent over TCP connection. persistent HTTP  multiple objects can be sent over single TCP connection between client, server. Application 3

Nonpersistent HTTP suppose user enters URL: 1a. HTTP client initiates TCP connection to HTTP server (process) at on port HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index 1b. HTTP server at host waiting for TCP connection at port 80. “accepts” connection, notifying client 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket time (contains text, references to 10 jpeg images) Application 4

Nonpersistent HTTP (cont.) 5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects 6. Steps 1-5 repeated for each of 10 jpeg objects 4. HTTP server closes TCP connection. time Application 5

Non-Persistent HTTP: Response time definition of RTT: time for a small packet to travel from client to server and back. response time:  one RTT to initiate TCP connection  one RTT for HTTP request and first few bytes of HTTP response to return  file transmission time total = 2RTT+transmit time time to transmit file initiate TCP connection RTT request file RTT file received time Application 6

Persistent HTTP non-persistent HTTP issues:  requires 2 RTTs per object  OS overhead for each TCP connection  browsers often open parallel TCP connections to fetch referenced objects persistent HTTP  server leaves connection open after sending response  subsequent HTTP messages between same client/server sent over open connection  client sends requests as soon as it encounters a referenced object  as little as one RTT for all the referenced objects Application 7

HTTP request message  two types of HTTP messages: request, response  HTTP request message:  ASCII (human-readable format) request line (GET, POST, HEAD commands) header lines carriage return, line feed at start of line indicates end of header lines Application 8 GET /index.html HTTP/1.1\r\n Host: www-net.cs.umass.edu\r\n User-Agent: Firefox/3.6.10\r\n Accept: text/html,application/xhtml+xml\r\n Accept-Language: en-us,en;q=0.5\r\n Accept-Encoding: gzip,deflate\r\n Accept-Charset: ISO ,utf-8;q=0.7\r\n Keep-Alive: 115\r\n Connection: keep-alive\r\n \r\n carriage return character line-feed character

HTTP request message: general format Application 9 request line header lines body

Uploading form input POST method:  web page often includes form input  input is uploaded to server in entity body URL method:  uses GET method  input is uploaded in URL field of request line: Application 10

Method types HTTP/1.0  GET  POST  HEAD  asks server to leave requested object out of response HTTP/1.1  GET, POST, HEAD  PUT  uploads file in entity body to path specified in URL field  DELETE  deletes file specified in the URL field Application 11

HTTP response message status line (protocol status code status phrase) header lines data, e.g., requested HTML file Application 12 HTTP/ OK\r\n Date: Sun, 26 Sep :09:20 GMT\r\n Server: Apache/ (CentOS)\r\n Last-Modified: Tue, 30 Oct :00:02 GMT\r\n ETag: "17dc6-a5c-bf716880"\r\n Accept-Ranges: bytes\r\n Content-Length: 2652\r\n Keep-Alive: timeout=10, max=100\r\n Connection: Keep-Alive\r\n Content-Type: text/html; charset=ISO \r\n \r\n data data data data data...

HTTP response status codes 200 OK  request succeeded, requested object later in this msg 301 Moved Permanently  requested object moved, new location specified later in this msg (Location:) 400 Bad Request  request msg not understood by server 404 Not Found  requested document not found on this server 505 HTTP Version Not Supported  status code appears in 1st line in server->client response message.  some sample codes: Application 13

Trying out HTTP (client side) for yourself 1. Telnet to your favorite Web server: opens TCP connection to port 80 (default HTTP server port) at cis.poly.edu. anything typed in sent to port 80 at cis.poly.edu telnet cis.poly.edu type in a GET HTTP request: GET /~ross/ HTTP/1.1 Host: cis.poly.edu by typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server 3. look at response message sent by HTTP server! Application 14 (or use wireshark!)

User-server state: cookies many Web sites use cookies four components: 1) cookie header line of HTTP response message 2) cookie header line in HTTP request message 3) cookie file kept on user’s host, managed by user’s browser 4) back-end database at Web site example:  Susan always access Internet from PC  visits specific e- commerce site for first time  when initial HTTP requests arrives at site, site creates:  unique ID  entry in backend database for ID Application 15

Cookies: keeping “state” (cont.) client server usual http response msg cookie file one week later: usual http request msg cookie: 1678 cookie- specific action access ebay 8734 usual http request msg Amazon server creates ID 1678 for user create entry usual http response Set-cookie: 1678 ebay 8734 amazon 1678 usual http request msg cookie: 1678 cookie- specific action access ebay 8734 amazon 1678 backend database Application 16

Cookies (continued) what cookies can bring:  authorization  shopping carts  recommendations  user session state (Web ) cookies and privacy:  cookies permit sites to learn a lot about you  you may supply name and to sites aside how to keep “state”:  protocol endpoints: maintain state at sender/receiver over multiple transactions  cookies: http messages carry state Application 17

Web caches (proxy server)  user sets browser: Web accesses via cache  browser sends all HTTP requests to cache  object in cache: cache returns object  else cache requests object from origin server, then returns object to client Goal: satisfy client request without involving origin server client Proxy server client HTTP request HTTP response HTTP request origin server origin server HTTP response Application 18

More about Web caching  cache acts as both client and server  typically cache is installed by ISP (university, company, residential ISP) why Web caching?  reduce response time for client request  reduce traffic on an institution’s access link.  Internet dense with caches: enables “poor” content providers to effectively deliver content (but so does P2P file sharing) Application 19

Caching example assumptions  average object size = 100,000 bits  avg. request rate from institution’s browsers to origin servers = 15/sec  delay from institutional router to any origin server and back to router = 2 sec consequences  utilization on LAN = 15%  utilization on access link = 100%  total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache Application 20

Caching example (cont) possible solution  increase bandwidth of access link to, say, 10 Mbps consequence  utilization on LAN = 15%  utilization on access link = 15%  Total delay = Internet delay + access delay + LAN delay = 2 sec + msecs + msecs  often a costly upgrade origin servers public Internet institutional network 10 Mbps LAN 10 Mbps access link institutional cache Application 21

Caching example (cont) possible solution:  install cache consequence  suppose hit rate is 0.4  40% requests will be satisfied almost immediately  60% requests satisfied by origin server  utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec)  total avg delay = Internet delay + access delay + LAN delay =.6*(2.01) secs +.4*milliseconds < 1.4 secs origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache Application 22

Conditional GET  Goal: don’t send object if cache has up-to-date cached version  cache: specify date of cached copy in HTTP request If-modified-since:  server: response contains no object if cached copy is up-to-date: HTTP/ Not Modified cache server HTTP request msg If-modified-since: HTTP response HTTP/ Not Modified object not modified before HTTP request msg If-modified-since: HTTP response HTTP/ OK object modified after Application 23