TDR Part 2: 3.3 Cavity Integration (10 pages) H. Hayano Baseline Design based on the meeting discussion.

Slides:



Advertisements
Similar presentations
Interface of Plug-Compatible Cryomodule Components KEK Norihito Ohuchi 2008/3/41GDE-Sendai Meeting.
Advertisements

Elvin Harms, Tom Peterson, Yuriy Orlov, Frank McConoloque.
EXPERIENCE FROM KEK Norihito Ohuchi 2009/11/9-101 Workshop on cryogenic and vacuum sectorisations of the SPL.
Cavity Technical Specification IWLC2010 WG3 industrialization session H. Hayano Geneva,Oct.2010.
FNAL-SCRF 会議報告 1. Cryomodule, Plug-compatible Interface ( 大 内) 2. High Pressure Code, 5K Shield (Tom Peterson)
Cost comparison of tuners H. Hayano, KEK AWLC14
SPL cryo-module conceptual design review Cavity, helium vessel and tuner assembly N. Valverde, G. Arnau, S. Atieh, I. Aviles, O. Capatina, M. Esposito,
Shuichi Noguchi, KEK6-th ILC School, November Auxiliary Components  Input Power Coupler  HOM Dumping Coupler  Frequency Tuner  He Jacket  Magnetic.
Cavity Integration summary H. Hayano April 25, 2008 ILC-SCRF
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
1.3 GHz FNAL Dressed Cavity S-1 Global Deliverable to KEK 7 July 2009.
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
ESS cavities interfaces
S1G Experiment Schedule Plan H. Hayano. Assembly work after cavity arrived Assumption: cavity with VT, with pickup antena, with Ar or N2 filled,
Summary of AWG7 SCRF technologies Eiji Kako Wolf-Dietrich Moeller Akira Yamamoto Hitoshi Hayano Tokyo, Nov
Internal Cryomodule Instrumentation ERL Main Linac Cryomodule 10/10/2015 Peter Quigley, MLC Design Review.
Shuichi Noguchi,SRF2007,10.71 New Tuners for ILC Cavity Application Shuichi Noguchi KEK.
Detail discussion of S1 Global at STF H. Hayano (KEK) GDE Mar 3-6, 2008.
Compatibility in the ILC ML. 主なデザインと相違点 BCD ( TTF) STF-BL その他 空洞、シー ル Φ 78 mm ビームパイ プ、アルミヘキサゴ ン Φ 80 mm ビームパイ プ、インジウムヘリ コ LL, Re 入力カプ ラー TTF-III 円筒セラミック窓.
STF status Mar.22,2005 H. Hayano, KEK. STF Phase 1 Test Accelerator DC gun : 200kV CsTe photocathode for quick start UV(262nm) Laser (337ns spacing, 2820bunches)
S.Noguchi (KEK) ILC08 Chicago , Nov . 17, Cavity Package Test in STF STF Phase-1 E. Kako, S. Noguchi, H. Hayano, T. Shishido, M. Sato, K. Watanabe,
July LEReC Review July 2014 Low Energy RHIC electron Cooling Sergey Belomestnykh SRF and RF systems.
Plug compatibility Document ILC10 cavity integration session H. Hayano.
S1G Experiment Schedule Plan; H. Hayano ILC10 GDE meeting.
LCWS13, November 2013 At the University of Tokyo W.–D. Möller Status of the TTF3 RF Power Coupler.
Shuichi NoguchiHayama ILC Lecture, Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance 
● Offer the reliable system to the Asian regional facility STF. ● Improve TTF design and demonstrate in the beam line for RDR / TDR. ● Establish industrial.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
Date 2007/Oct./25 FNAL-GDE-Meeting Global Design Effort 1 Cryomodule Report N. Ohuchi KEK 1.Cryomodule & Cryogenics KOM 2.GDE-meeting discussion I.Interface.
Summary ( Cryomodule, Plug-compatible Interface) Norihito Ohuchi.
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
Date 2007/Oct./23 FNAL-GDE-Meeting Global Design Effort 1 Cryomodule Interface Definition (FNAL-GDE-Meeting) N. Ohuchi.
1 K.Jensch, D.Kostin, DESY - Cryomodule components List S1 – DESY parts DESY parts for the S1 Cavity-String.
Summery of the power coupler session at the LCWS13 workshop E. Kako W.-D. Möller H. Hayano A. Yamamoto All members of SCRF WG November 14, 2013.
Definition of Work Area H. Hayano, KEK EDR-KOM-cavity at DESY Issues of Cavity and Cavity Package, Work Package discussion.
Cavity and Cryomodule Plug-Compatibility To Reach Consensus Akira Yamamoto ILC-08, Chicago, Nov. 17, 2008 Nov. 17, 2008ILC-08 SCRF1.
MAIN LINAC CRYOMODULE DESIGN REVIEW INPUT COUPLER September 5, 2012V. Veshcherevich.
S1 global: thermal analysis TILC09, April 19th, 2009 Serena Barbanotti Paolo Pierini.
Detail plan of S1-Global H. Hayano (KEK),
Date 2007/Sept./12-14 EDR kick-off-meeting Global Design Effort 1 Cryomodule Interface definition N. Ohuchi.
5 K Shield Study of STF Cryomodule (up-dated) Norihito Ohuchi KEK 2008/4/21-251FNAL-SCRF-Meeting.
ALCPG/GDE Meeting FNAL Global Design Effort 1 Cavity Specification Table 23 Oct 2007 FNAL Lutz Lilje DESY.
Hayama ILC Lecture, , Shuichi Noguchi 1 Part III ILC BCD Cavity  Maximum Use of Potential Performance  Maximum Use of each Cavity Performance.
Tuner, Coupler WP & specification table H. Hayano, KEK GDE Sendai.
Plug compatibility discussion TILC09 cavity integration session H. Hayano.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Preparation procedure and RF processining of cERL-ML power coupler at KEK Hiroshi Sakai, Takaaki Furuya, Masato Sato, Kenji Shinoe, Kensei Umemori, Kazuhiro.
CW Cryomodules for Project X Yuriy Orlov, Tom Nicol, and Tom Peterson Cryomodules for Project X, 14 June 2013Page 1.
Ralf Eichhorn CLASSE, Cornell University. I will not talk about: Cavities (Nick and Sam did this) HOM absorbers (did that yesterday) Power couplers (see.
11/12/2013P. Bosland - AD-retreat - Lund Designs of the Spoke and Elliptical Cavity Cryomodules P. Bosland CEA/Saclay IRFU On behalf of the cryomodule.
TDR parameter discussion on Cavity, Cavity Integration R. Geng, H. Hayano
Shuichi NoguchiTTC Meeting at Milano, Injector Cryomodule for cERL at KEK Cavity 2 Prototypes were tested. Input Coupler 2 Couplers were tested.
325 MHz Superconducting Spoke Cavity Coupler status. T. Khabiboulline Power Coupler design for Superconducting Spoke cavities. Originally.
S1G Experiment Schedule Plan
TDR guideline discussion on Cavity Integration
WP5 Elliptical cavities
T5.2: Harmonization - Material and Component Reference
Power Couplers, HOM Couplers and Tuners for the XFEL
Crab Cavity R&D Plan Kirk 1 6/Dec/2016
S1-G Webex meeting Global Design Effort
Mechanical setups Lorentz Force Detuning System Setup
High Gradient Cavities: Cost and Operational Considerations
V. Veshcherevich Cornell University
Review of the European XFEL Linac System
CEPC Input Coupler Discuss 6th IHEP-KEK SCRF Collaboration Meeting
Cryomodule Assembly Plan
CEPC-650MHz Cavity Cryomodule
Cryomodule ESS FAT & SAT SRF meetinG on 07/11/2017
V. Veshcherevich Cornell University
Cryomodule Design for CW Operation 3.9 GHz considerations
Presentation transcript:

TDR Part 2: 3.3 Cavity Integration (10 pages) H. Hayano Baseline Design based on the meeting discussion

3.3 Cavity integration Coupler design TTF-III coupler design Tuner design Blade tuner design He Jacket and interface Ti jacket, bellows in-between support tabs magnetic shield inside Nb-Ti flange with aluminum hexagonal seal Plug compatible design Plug compatible performance specification specification tables Interface definition interface drawings Write-up contents will be;

TTF-III coupler (baseline)

Blade tuner (baseline)

cavity specification itemspecificationunit and commentsfurther comments RF properties Frequency1.30GHz Number of cells9.00cells Gradient 31.50MV/moperational 35.00MV/mVertical test Q ^10at ^10at 31.5 HOM damping Qdecide later R/Qdecide later Short range wake decide later Operating temperature2.00K Physical properties Length1247mmTESLA-short length Aperture mm must be compatible with beam dynamics Alignment accuray300.00umrms MaterialNiobium Wall thickness2.80mm Stiffness decide later Flange/Seal system Materialdecide later Maximum overpressure allowed2bar Lorentz force detuning over Flat- top at 35 MV/m1.00kHzmaximum Outer diameter He vessel mm(inner diameter) Mag shield outside, decide later for precise number mm(inner diameter) KEK Mag shield inside, decide later for precise number Magnetic shielding inside/outsidedecide later * yellow boxes indicate ‘not fixed’

tuner specification itemspecificationunit and commentsfurther comments Slow tuner Tuning range>600kHz Hysteresis in Slow tuning <10µm Motor requirement step-motor use, Power-off Holding, magnetic shielding Motor specification ex) 5 phase, xxA/phase, … match to driver unit, match to connector pin asignment,… decide later Motor location insdie 4K? / outside 300K? / inside 300K accessible from outside? need availability discussion, MTBF decide later Magnetic shielding<20 mG at Cavity surface, average on equater Heat Load by motor<50mW at 2K Physical envelope do not conflict with GRP, 2-phase line, vessel support, alignment references, Invar rod, flange connection,… cable connection, Mag shield Survive Frequency Change in Lifetime of machine ~20 Mio. steps could be total number of steps in 20 years, * yellow boxes indicate ‘not fixed’

Fast tuner Tuning range>1 kHz over flat-top at 2K Lorentz detuning residuals <50 Hz at 31.5MV/m flat- top (LD and microphinics? or LD only?) :decide later Actuator specification ex) low voltage piezo V, … match to driver unit, match to connector pin asignment, … decide later Actuator location insdie 4K?/inside 4K accessible/inside 100K? accesible / inside 300K accessible from outside? decide later Magnetic shielding<20 mG at Cavity surface average Heat Load in operation <50mW Physical envelope do not conflict with GRP, 2-phase line, vessel support, alignment references, Invar rod, flange connection,… Survive Frequency Change in Lifetime of machine >10 10 number of pulses over 20 years, (2x10 9 :operational number) * yellow boxes indicate ‘not fixed’

Coupler conditionspecificationunit and commentsfurther comments Power requirements Operation >400kW for 1600 us Processing >1200kW upto 400 usneed after vac break, cool-down >600kW larger than 400 usneed after vac break, cool-down Processing with reflection mode >600kW for 1600usin Test stand Processing time warm <50hours after installation, definition of power/pulse_width target are the same as 'Power Requirement' above. cold <30hours after installation, definition of power/pulse_width target are the same as 'Power Requirement' above. Heat loads /coupler 2K static < 0.063W 5K static < 0.171Wdepend on tunability 40 K static < 1.79W 2K dynamic < 0.018W 5K dynamic < 0.152W 40K dynamic < 6.93W Cavity vacuum integrety # of windows 2 bias capablity yes RF Properties Qext Yestunable Tuning range ^6 if tunable Physical envelope Position compatible to TTF-IIIdecide later Flange compatible to TTF-III decide later (to cavity, to cryostat) waveguide compatible to TTF-IIIdecide later support compatible to TTF-IIIdecide later Instrumentation vacuum level >= 1 spark detection 0at window electron current detection >= 1at coax temperature >= 1at window * yellow boxes indicate ‘not fixed’

(1) beam pipe port flange ( beam pipe diameter ) (2) coupler port flange ( port pipe diameter ) (3) 4 support tabs (4) He pipes cavity boundary Cavity boundary BCD: TESLA-short cavity

Cavity boundary BCD: TESLA-short cavity from FNAL drawing DN78 interface DN40 interface L = 1247 beam port coupler port L = 750L = this pipe should be weld-connection

Al hexagonal

from FNAL drawing Cavity boundary BCD: TESLA-short cavity L = 750 cut-end for bellows welding support tab L = 1247

(1)cavity port flange ( port diameter ) (2) cold/warm part interface flange (3) cryostat vessel flange (4) waveguide flange input coupler boundary Input coupler boundary BCD: TTF-III coupler

DN40 interface cavity coupler port L = 126 L = L = WR650 waveguide flange interface ( Ø260 OD flange? ) interface O-ring DN200 cryomodule coupler port waveguide port