Plasticity and Failure of Advanced High Strength Steels

Slides:



Advertisements
Similar presentations
Optimization of Laser Deposited Rapid Tooling D. Schwam and Y. Wang Case Western Reserve University NADCA DMC, Chicago – Feb.17,
Advertisements

Chapter 11 Mechanical Properties of Materials
MODELLING OF DEFORMATION AND DAMAGE OF SPECIMENS UNDER STATIC AND DYNAMIC LOADING Kondryakov E.A., Lenzion S.V., and Kharchenko V.V.
Manufacturing Technology
NOTCH EFFECTS INTRODUCTION OF A NOTCH AFFECTS THE FRACTURE PROCESS Eg: INCREASES THE DUCTILE-BRITTLE TRANSITION TEMPERATURE OF STEEL NOTCH CREATES A LOCAL.
NEW DESIGN FOR RF FINGERS C. Garion 5 June, 2012TE-VSC1 Acknowledgements to A. Lacroix and H. Rambeau for materials and help.
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
Prediction of Load-Displacement Curve for Weld-Bonded Stainless Steel Using Finite Element Method Essam Al-Bahkali Jonny Herwan Department of Mechanical.
Metal Forming Metal forming includes a large group of manufacturing processes in which plastic deformation is used to change the shape of metal work pieces.
H.-M. Huang S.-D. Liu National Steel Corporation, Market St., Livonia, MI S. Jiang DaimlerChrysler Corporation, 800 Chrysler Dr., Auburn Hills,
EXPERIMENT # 3 Instructor: M.Yaqub
Mechanics of Materials II
1 Deformation and damage of lead free materials and joints J. Cugnoni*, A. Mellal*, Th. J. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Mechanical characterization of lead- free solder joints J. Cugnoni*, A. Mellal*, Th. J. Pr. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Mechanics of Materials II
Mechanics of Elastic Materials
Sheet Metal Bending.
Thermal Strains and Element of the Theory of Plasticity
Aluminum Sheet Stretch-Bend Limits and Fracture Criterion
Principal Stresses and Strain and Theories of Failure
Mechanical Properties
Measuring and Modeling Density Distributions in Pharmaceutical Tablets Katherine Doyle Advisor: Dr. Zavaliangos Mentor: Wenhai Wang.
Ken Youssefi Mechanical Engineering Dept., SJSU 1 Failure Theories – Static Loads Static load – a stationary load that is gradually applied having an unchanging.
Mechanical Properties
CHE 333 Class 11 Mechanical Behavior of Materials.
Module 8 Overview of processes 1. Module 82 Metal forming Principle of the process Structure Process modeling Defects Design For Manufacturing (DFM) Process.
1 ME383 Modern Manufacturing Practices Lecture Note #3 Stress-Strain & Yield Criteria Dr. Y.B. Guo Mechanical Engineering The University of Alabama.
FUNDAMENTALS OF METAL FORMING
FATIGUE Fatigue of Materials (Cambridge Solid State Science Series) S. Suresh Cambridge University Press, Cambridge (1998)
FATIGUE Fatigue of Materials (Cambridge Solid State Science Series) S. Suresh Cambridge University Press, Cambridge (1998) MATERIALS SCIENCE &ENGINEERING.
ME 612 Metal Forming and Theory of Plasticity
R. H. Wagoner 1 Thermally-Enhanced Forming of Mg Sheets Midterm Report, Dec. 5, May 31, 2009 Robert H. Wagoner R. Wagoner, LLC 144 Valley Run Place.
Mechanical Properties: Review l0l0 A0A0 F  (stress)  (strain) Y nominal (engineering)true plastic – rearrange chemical bonds elastic – stretch chemical.
Chapter 2 Properties of Metals.
Course No.: MEBF ZC342 MACHINE DESIGN
FUNDAMENTALS OF METAL FORMING
Draw-Bend Fracture Prediction with Dual-Phase Steels R. H. Wagoner September 25, 2012 AMPT Wollongong, Australia.
Forming Advanced High Strength Steels
Module 8 Overview of processes 1. Module 82 Metal forming Principle of the process Structure and configurtion Process modeling Defects Design For Manufacturing.
NUMISHEET2005 —Detroit, MI August 15-19, Cyclic and Monotonic Plasticity of Mg Sheet R. H. Wagoner, X. Lou, M. Li, S. R. Agnew*, Dept. Materials.
EGM 5653 Advanced Mechanics of Materials
R. H. Wagoner 1 Thermally-Enhanced Forming of Mg Sheets Midterm Report, Dec. 5, May 31, 2009 Robert H. Wagoner R. Wagoner, LLC 144 Valley Run Place.
Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore.
Exercises in Hydraulic Bulge Testing H.S. Kim H. Lim Mike Sumption Ted Collings The Ohio State University Dept of Materials Science and Engineering Center.
Materials Science Chapter 8 Deformation and Fracture.
EUROnu WP2 meeting, Cracow 14 October 20101/32M.Kozień & B.Szybiński NEXT STEPS IN STRENGTH ANALYSIS OF THE HORN EUROnu Project Cracow University of Technology.
ISE 311 Tensile Testing Lab in conjunction with Section 3.1 in the text book “Fundamentals of Modern Manufacturing” Third Edition Mikell P. Groover 4/25/2008.
ANSYS Basic Concepts for ANSYS Structural Analysis
2MOrC1-02 Mechanical properties of niobium tube with
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
Mechanical Properties
Failure and Failure Theories:
The Thick Walled Cylinder
Background Mg AZ31B sheet alloy has advantages of low density, high strength and high stiffness. However, it has limited formability at room temperature,
Introduction We select materials for many components and applications by matching the properties of the material to the service condition required of the.
The Thick Walled Cylinder
FUNDAMENTALS OF METAL FORMING
Draw-Bend Fracture Prediction with Dual-Phase Steels
Predicting the Shear Failure of Dual-Phase Steels
Lecture 4: Plastic Deformation
( BDA 3033 ) CHAPTER 6 Theories of Elastic Failures
( BDA 3033 ) CHAPTER 6 Theories of Elastic Failures
Overview of processes Module 8.
Mechanical properties of metals Stress and Strain in metals
PDT 153 Materials Structure And Properties
Qualification of sheets for cold forming
Mechanical Properties Of Metals - I
Yielding And Fracture Under Combine Stresses
Mechanical Property 기계적 성질
Presentation transcript:

Plasticity and Failure of Advanced High Strength Steels R.H. Wagoner, Ji Hyun Sung, A. Madeshia, Ji Hoon Kim

Outline Introduction Draw-Bend Testing Constitutive Equations Draw-Bend Simulations Conclusions

Introduction 3 3

NSF Workshop on AHSS (October 2006) 70 L-IP 60 AUST. SS TWIP 50 IF IF- HS Elongation (%) Elongation (%) 40 Mild ISO ISO 30 BH TRIP CMn 20 HSLA DP, CP 10 MART 300 600 600 900 1200 1600 Tensile Strength (MPa) R. W. Heimbuch: An Overview of the Auto/Steel Partnership and Research Needs [1] 4 4 4

Unexpected Forming Failures Comparison between FE / FLD simulation and practice. Stoughton, AHSS Workshop, 2006

“Shear Failure?” FLD Tensile localization map (+ biaxial) AHSS “Shear failure” at die radii, minimal width or thickness strain Lou, XY, Int. J. Plasticity, 23, 1, 2007, 84 Mg AZ31B Al 6013 (Shear type) (Tensile localization) 6 6

Jim Fekete et al., AHSS Workshop, 2006 Project Objectives Produce and characterize fractures at die radii (“shear failure”) Develop a new formability criterion (with bending) Jim Fekete et al., AHSS Workshop, 2006 7

Approach: Draw-Bend Test

Draw-Bend Testing 9 9

Draw-Bend Fracture Testing Start Max. Finish V1 R 317.5 mm 190.5 mm 435.5 mm V2 = aV1 u1 = V1 Dt R: 1/8, 3/16, 1/4, 7/16, 3/4 inch (3.2, 4.8 , 6.4, 11.1, 19.1 mm) 10 10

Phenomenological Failure Types Type I Type II Type III 65o V2 V1 Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller) 11 11

Failure Types: DP590(B)-CR-1.4mm R/t = 2.27 , V1 = 2.54 mm/s, e = 0.37 , de/dtmax = 0.22 /s II I III DXc = 6mm V2/V1 = 0 = 0.96 DXc = 17mm = 0.92 V2/V1 = 0.25 DXc = 43mm = 0.89 V2/V1 = 0.50

Transition: Type II  III (DP590) R/t = 2.57, V1 = 127 mm/s, em = 0.33 , de/dtmax = 7.95 /s II III III III V2/V1 = 0.25 V2/V1 = 0.20 V2/V1 = 0.20 V2/V1 = 0.10 DXc = 24 DXc = 20 DXc = 20 DXc = 16 = 0.94 = 0.93 = 0.93 = 0.95

Infrared Temperature Measurements Tmax ~ 50 to 100oC near fracture Type III Differential temperature rise along the width

IR Results - Type III (Fracture) t = - 0.07 s t = 0 s t = 0.07 s 100 200 300 400 500 600 700 800 20 30 40 50 60 70 80 0.2 0.4 0.6 0.8 1 Time (sec) Front stress Back stress 2 3 4 C_ DP590 2.65 R/t 25.4 mm w V2 127 mm/s V1 t = - 0.07 s t = 0 s t = 0.07 s t = 0.14 s Calibration Material V1 (mm/s) TTC (oC) TFLIR e (emissivity) DT DP590(C)-GA-1.75mm 127 60.25 53.8 0.7 6.5

Controlled Draw-Bend Parameters R/t em= ln(1+tsheet/R), em=tsheet/R V1 emax~ em/DD, DD~3tsheet/V1 (FEA) V2/V1 related to DXc at failure . Observed Role of Parameters R/ti ( emh & de/dtmax h ) IgIII V2/V1h ( DXch ) IgIII V1h ( de/dtmax h) IgIII

Definition of Normalized Stress Maximum Pull Force / Original Area s = Ultimate Tensile Strength (at e = 0.7/s) .

Effect of R/t (V1 = 127 mm/s, V2/V1 = 0)

Effect of Bend Strain Rate (V2/V1 = 0)

Failure Types (V2/V1=0) DP590(C)-GA-1.75mm R/t (em) g V1 (mm/s) i 127 1.7(0.46) 2.6(0.33) 3.7(0.24) 6.5(0.14) 11(0.09) 127 0.88 0.96 0.99 1.00 25 0.95 0.98 0.97 2.5 0.91 0.94 0.93 Key Type I Type II Type III DP590(B)-CR-1.4mm R/t (em) g V1 (mm/s) i 2.3(0.37) 3.4(0.26) 4.5(0.20) 7.9(0.12) 13.6(0.07) 127 0.92 0.95 0.99 0.96 0.98 25 2.5 0.94 0.97 0.93

Failure Type Map (DP780, V2/V1=0) 21

Failure Type Map (TRIP780, V2/V1=0) 22

(R/t)*1 and (R/t)*2 for D-P Steels (V2/V1=0) Shear / Tensile Transition, (R/t)*1 [ = f (matl, V1) ] V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 6 3 2 DP780(D)-GI-1.4 DP980(D)-GA-1.45 11 4 Maximum Stress Transition, (R/t)*2 [ not f (matl, V1) ] V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 4 3 DP780(D)-GI-1.4 5 DP980(D)-GA-1.45 23 23

Constitutive Equations 24 24

1D Constitutive Equation

Comparison in Tensile Range (25oC)

Large-Strain Comparison (25oC)

Thermo-Mechanical FE Simulation Tinitial = 25oC Grip hmetal, air = 20 W/m2K Sample hmetal,metal = 5 kW/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 2 layers Von Mises, isotropic hardening Symmetric model Grip Gage region (2% taper)

Simulated Tensile Test (50oC) 29

Predicted Ductility (ef): DP590 Temp Exp ef* Hollomon Voce Mixed 25℃ 0.247 0.274(11%) 0.184(-23%) 0.229(-10%) 50℃ 0.238 0.282(15%) 0.185(-19%) 0.228(-5%) 100℃ 0.195 0.278(43%) 0.184(-4%) 0.204(5%) Std. Dev.(%) 0.056(24%) -0.048(-15%) 0.013(7%) * ef is defined by measured fractional load drop at failure 30

Predicted Ductility (ef): DP 590, 780, 980 Hollomon Voce H/V DP590 0.04(14%) 0.05(20%) 0.02(7%) DP780 0.03(18%) 0.04(22%) 0.01(6%) DP980 0.04(30%) 0.03(21%) 0.01(5%) 31 31

Large-Strain Comparison (DP780)

Large-Strain Comparison (DP980)

Draw-Bend Simulations (Coupled Thermo-Mechanical FEM) Note: Test results are shown for fixed roller and lubricated condition. 34 34

FE Draw-Bend Model U2, V2 hmetal,air = 20W/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 5 layers Von Mises, isotropic hardening Symmetric model m = 0.08 hmetal,metal = 5kW/m2K U1, V1

Role of Thermal Effects (Type III)

R/t = 7.9, V1=127mm/s, V2/V1=0 (Type I)

R/t = 7.9, V1=127mm/s, V2/V1=0 (Type I) Temperature (oC) 117mm 52oC ep=0.16 99oC, ep=0.41 (93oC measured) Type I F=Fmax U1=46mm F=0.9Fmax U1=61mm

R/t = 7.9, V1=127mm/s, V2/V1=0 (Type I)

R/t = 3.4, V1=127mm/s, V2/V1=0.5 (Type II)

R/t = 3.4, V1=127mm/s, V2/V1=0.5 (Type II) Temperature (oC) Type II 10mm 101oC, ep=0.38 (93oC measured) 157oC ep=0.65 F=Fmax U1=61mm F=0.9Fmax U1=67mm

R/t = 3.4, V1=127mm/s, V2/V1=0.5 (Type II)

R/t = 3.4, V1=127mm/s, V2/V1=0 (Type III)

R/t = 3.4, V1=127mm/s, V2/V1=0 (Type III) Temperature (oC) Type III 155oC ep=0.72 87oC, ep=0.39 (80oC measured) F=Fmax U1=44mm F=0.9Fmax U1=46mm

R/t = 3.4, V1=127mm/s, V2/V1=0 (Type III)

Observed vs. Simulated Failure (DP590) DP590(B)-CR-1.4mm Key: Type I, Type II, Type III V2/V1=0 R/t g V1 (mm/s) i 2.3 3.4 4.5 7.9 13.5 127 0.96 0.99 1.00 25 2.5 0.97 0.98 V2/V1=0.5 R/t g V1 (mm/s) i 2.3 3.4 4.5 7.9 13.5 127 0.86 0.93 0.96 0.99 25 0.95 0.98 2.5 0.88 0.94 46

Observed vs. Simulated Failure (DP780) DP780(D)-GI-1.4mm Key: Type I, Type II, Type III V2/V1=0 R/t g V1 (mm/s) i 2.3 3.4 4.5 7.9 13.5 51 0.91 0.93 0.94 0.96 0.95 13 0.90 0.92 2.5 V2/V1=0.5 R/t g V1 (mm/s) i 2.3 3.4 4.5 7.9 13.5 51 0.83 0.87 0.91 0.93 0.94 13 0.82 0.90 0.92 2.5 0.88 47

Effect of R/t (DP590, V2/V1 = 0)

Effect of R/t (DP780, V2/V1 = 0)

Effect of Strain Rate (DP780)

Conclusions Note: All test results are shown for fixed roller and lubricated condition. 51 51

Conclusions Thermo-mechanical simulation predicts the formability of DP590, DP780. Damage mechanics is not required. Deformation-induced heating is a critical aspect. New constitutive form is needed for accurate predictions. Knowledge of strain hardening beyond eu is critical.

Definition of Normalized Stress sUTS (DP590(C)) = 614 MPa sUTS (DP590(B)) = 642 MPa sUTS (DP780(D)) = 835 MPa sUTS (TRIP780(D)) = 875 MPa sUTS (DP980(D)) = 1014 MPa 53 53

Failure Type Map (V2/V1=0): DP590(B) 54

Failure Type Map (V2/V1=0): DP780(D) 55

Failure Type Map (V2/V1 = 0): DP980(D) 56 56

Failure Type Map (V2/V1=0.5): DP590(B) 57

Failure Type Map (V2/V1=0.5): DP780(D) 58

Failure Type Map (V2/V1 = 0.5): DP980(D) 59 59

Summary: (R/t)*1 varies with material and V1 Shear / Tensile Failure Transition, (R/t)*1: V2/V1=0 V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 6 3 2 DP780(D)-GI-1.4 DP980(D)-GA-1.45 11 4 Shear / Tensile Failure Transition, (R/t)*1: V2/V1=0.5 V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 14 6 DP780(D)-GI-1.4 11 DP980(D)-GA-1.45 13 60 60

Summary: (R/t)*2 almost independent of material Maximum Stress Transition, (R/t)*2: V2/V1=0 V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 5 3 DP780(D)-GI-1.4 4 DP980(D)-GA-1.45 Maximum Stress Transition, (R/t)*2: V2/V1=0.5 V1(mm/s) 51(127) 13(25) 2.5 DP590(B)-CR-1.4 4 3 DP780(D)-GI-1.4 5 DP980(D)-GA-1.45 61 61

Effect of Roller Condition (V2/V1 = 0): DP780(D) (R/t)*1 line for fixed roller Free roller Fixed roller Fixed Free (R/t)*1 line for free roller * Direction of roller effect agrees with FE simulation (V2/V1=0 only) 62 62

Jump Tests: DP590(B)-CR-1.4mm 63 63

Measurement of Strain Rate Sensitivity 1% 4% 64

W. Gan, Unpublished Result, 2008 Preliminary Results: Interrupted Tests A B C D E F W. Gan, Unpublished Result, 2008 65

1D Constitutive Equation: DP590(B)-CR-1.4mm H=1.07e-4 m=0.0043 α Hollomon Voce α1=0.743 K=1065 σo=666.7 α2=0.0035 n=0.182 A=0.5096 B=19.71 66

Commercial Sheet-Forming FE Problems with commercial sheet-forming FE: 1. No thermo-mechanical capability 2. No solid elements Solution to Problem 1: 1. Calculate the adiabatic constitutive equation 2. Use with isothermal FEA

Hardening Curve under Adiabatic Condition : temperature increase caused by adiabatic deformation heating

Tensile Test Simulation

Draw-Bend Simulation