Probing Electrostructural Coupling on Magnetoelectric CdCr 2 S 4 1 IFIMUP and IN- Institute of Nanoscience and Nanotechnology and Department of Physics,

Slides:



Advertisements
Similar presentations
-CoFe 2 O 4 nanocomposite films Magnetic Properties of BaTiO 3 -CoFe 2 O 4 nanocomposite films :::: Grupo FCD :::: Centro de Física da Universidade do.
Advertisements

First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Ivane Javakhishvili Tbilisi State University Institute of Condensed Matter Physics Giorgi Khazaradze M Synthesis and Magnetic Properties of Multiferroic.
Mesoscopic phase modulations in complex materials Sang-W Cheong, Rutgers University NSF-DMR Intriguing cross-coupling phenomena in multiferroics.
Junghoon Kim and Jung Hoon Han Department of Physics Sungkyunkwan University.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
University of Illinois Non-linear Electrodynamic Response of Dielectric Materials microwave applications (radar, etc) phase shifters tuned filters voltage.
The Double Pervoskite NaTbMnWO 6 : A Likely Multiferroic Material † Alison Pawlicki, ‡ A. S. Sefat, ‡ David Mandrus † Florida State University, ‡ Oak Ridge.
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
Magnetocapacitive effect in SDW system (TMTSF) 2 AsF 6 D. Starešinić, D. Dominko, K. Biljaković Institute of Physics, Zagreb, Croatia P. Lunkenheimer,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
AC-susceptibility method for Curie temperature determination. Experiment and theory A.V. Korolev, M.I. Kurkin, Ye.V. Rosenfeld Institute of Metal Physics,
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
The study of ferroelectric switching using x-ray synchrotron radiation
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
LOCAL PROBE STUDIES IN MANGANITES AND COMPLEX OXIDES V.S. Amaral 1, A.M.L. Lopes 2, J.P. Araújo 3, P.B. Tavares 4, T.M. Mendonça 3,5, J. S. Amaral 1, J.N.
Berry Phase Effects on Electronic Properties
High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,
Charge Order-Disorder Phase Transition Detected By EPR in α'-(BEDT-TTF) 2 IBr 2 1 Roman Morgunov, 1 Alexei Dmitriev, 1 Alisa Chernenkaya, 2 Kaoru Yamamoto,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
PROPOSAL TO THE ISOLDE COMMITTEE – INTC/P258-Addendum 1 Study of Local Correlations of Magnetic and Multiferroic Compounds Aveiro 1, L’ Aquila 2, Lisboa.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Thermodynamic functions of non- ideal two-dimensional systems with isotropic pair interaction potentials Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS,
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Perturbed Angular Correlation studies of Hg coordination mechanisms on functionalized magnetic nanoparticles P. Figueira, M. Silva Martins, A. L. Daniel-da-Silva,
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
Donor-Acceptor Complexes in ZnO
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
EXPLORE/OC: Photometry Results for the Open Cluster NGC 2660 K. von Braun (Carnegie/DTM), B. L. Lee (Toronto), S. Seager (Carnegie/DTM), H. K. C. Yee (Toronto),
1 Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal 2 Instituut voor Kern- en Stralingsfysica.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
2. Sample Structure Effect of sintering temperature on dielectric loss, conductivity relaxation process and activation energy in Ni 0.6 Zn 0.4 Fe 2 O 4.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
University of Dhaka, Bangladesh
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
4. CERN, Geneva, Switzerland
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
Dielectric properties of BT-LMT mixed ceramics Povilas Keburis1, Juras Banys1, Algirdas Brilingas1, Jonas Grigas1, Andrei Salak2, and Victor M. Ferreira3.
High pressure synthesis of lone-pair
The 9th international Conference for Basic Sciences
Hyperfine interaction studies in Manganites
Volume 106, Issue 6, Pages (March 2014)
Study of the nature and role of nanoscale order in complex materials
Fractal atomic-level percolation in metallic glasses
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Bipedal Locomotion in Crawling Cells
Volume 75, Issue 4, Pages (October 1998)
Emergence of room-temperature ferroelectricity at reduced dimensions
Michael E Wall, James B Clarage, George N Phillips  Structure 
V.P. Ivanova, I.M. Makarov, T.E. Schäffer, T. Heimburg 
Volume 86, Issue 4, Pages (April 2004)
Dynamics of Active Semiflexible Polymers
Dynamics of the Transition between Open and Closed Conformations in a Calmodulin C-Terminal Domain Mutant  Johan Evenäs, Anders Malmendal, Mikael Akke 
Anomalous Dome-like Superconductivity in RE2(Cu1-xNix)5As3O2 (RE = La, Pr, Nd)  Xu Chen, Jiangang Guo, Chunsheng Gong, Erjian Cheng, Congcong Le, Ning.
Electron Acoustic Waves (EAW) EAW’s are novel kinetic waves that exist only because nonlinear trapping turns off Landau damping. We recently provided.
Fig. 1 Crystal structure and superconductivity in fcc fullerides.
Presentation transcript:

Probing Electrostructural Coupling on Magnetoelectric CdCr 2 S 4 1 IFIMUP and IN- Institute of Nanoscience and Nanotechnology and Department of Physics, University of Porto, Rua do Campo Alegre, 687, Porto, Portugal 2 CFNUL – Center Nuclear Physics, University of Lisbon, Av. Prof. Gama Pinto, 2, , Lisboa, Portugal 3 CICECO and Departament of Physics, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal 4 ORNL, P.O. Box 2008, MS6475, Oak Ridge, Tennessee , USA 5 APS - Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 6 ITN - Instituto Tecnológico e Nuclear, EN 10 - Apartado 21, Sacavém, Portugal G.N.P. Oliveira 1,2 A.M. Pereira 1 J Amaral 3 A. M Santos 4 T.M Mendonça 1 Y. Ren 5 J.G. Correia 6 J.P. Araújo 1 A.M.L. Lopes 2 Jornadas MAP-fis 2012

 Outline  Motivation  Structural Details – CdCr 2 S 4  Results  Structural Characterization  Magnetic Characterization  Local Atomic Probe Characterization  Electric Field Gradient – PAC  Atomic displacements – PDF  Conclusions OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

 New solid state systems exhibiting simultaneous (anti) ferroelectric ((A)Fe) and (anti) ferromagnetic ((A)Fm) orders - Multiferroics; [1] S. Lee et al, Nature 451, (14 Feb 2008) [2] J. Hemberger et al, Nature 434, (17 Mar 2005) [3] S. Seki et al, Psysical Review Letters 101, 2008  Recently, the search for ferroelectricity in materials with known magnetic properties, have already shown some results, namely in: Manganites (RMnO3, R=Gd, Tb, Lu, Y, Er …) [1] Chromites with spinel structure (DCr 2 X 4, D=Cd, Hg, and X= S, Se) [2] Delafossite structure (ABO 2, A=Ag, Cu; B=Al,Ga,Cr,... e X=O) [3] Heterostructures (SrTiO 3 /BiFeO 3 /CoFe) possibility to manipulate the magnetic degrees of freedom electrically or vice- versa; Images taken From: N. A. Hill. Why Are There So Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104(29):6694–6709,  maximization of the (A)Fe-(A)Fm coupling  3  Possible applications: new non-volatile memories with magnetic/ electric Read/ Write; OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

 New solid state systems exhibiting simultaneous (anti) ferroelectric ((A)Fe) and (anti) ferromagnetic ((A)Fm) orders - Multiferroics; [1] S. Lee et al, Nature 451, (14 Feb 2008) [2] J. Hemberger et al, Nature 434, (17 Mar 2005) [3] S. Seki et al, Psysical Review Letters 101, 2008 possibility to manipulate the magnetic degrees of freedom electrically or vice- versa; Images taken From: N. A. Hill. Why Are There So Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104(29):6694–6709,  maximization of the (A)Fe-(A)Fm coupling  4  Possible applications: new non-volatile memories with magnetic/ electric Read/ Write; OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary  Recently, the search for ferroelectricity in materials with known magnetic properties, have already shown some results, namely in: Manganites (RMnO3, R=Gd, Tb, Lu, Y, Er …) [1] Chromites with spinel structure (DCr 2 X 4, D=Cd, Hg, and X= S, Se) [2] Delafossite structure (ABO 2, A=Ag, Cu; B=Al,Ga,Cr,... e X=O) [3] Heterostructures (SrTiO 3 /BiFeO 3 /CoFe)

[1] S. Lee et al, Nature 451, (14 Feb 2008) [2] J. Hemberger et al, Nature 434, (17 Mar 2005) [3] S. Seki et al, Psysical Review Letters 101, 2008  Recently, the search for ferroelectricity in materials with known magnetic properties, have already shown some results, namely in: Manganites (RMnO3, R=Gd, Tb, Lu, Y, Er …) [1] Manganites (RMnO3, R=Gd, Tb, Lu, Y, Er …) [1] Chromites with spinel structure (DCr 2 X 4, D=Cd, Hg, and X= S, Se) [2] Chromites with spinel structure (DCr 2 X 4, D=Cd, Hg, and X= S, Se) [2] Delafossite structure (ABO 2, A=Ag, Cu; B=Al,Ga,Cr,... e X=O) [3] Delafossite structure (ABO 2, A=Ag, Cu; B=Al,Ga,Cr,... e X=O) [3] Images taken From: N. A. Hill. Why Are There So Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104(29):6694–6709, OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary  New solid state systems exhibiting simultaneous (anti) ferroelectric ((A)Fe) and (anti) ferromagnetic ((A)Fm) orders - Multiferroics; possibility to manipulate the magnetic degrees of freedom electrically or vice- versa;  maximization of the (A)Fe-(A)Fm coupling   Possible applications: new non-volatile memories with magnetic/ electric Read/ Write;

CrS 6 CdS 4 A site Cd 2+ B site Cr 3+ OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

Below  116 K   short-range magnetic clusters  H>100 Oe cluster destruition Inset : Inset : Temperature dependence of  -1 measured on heating and with H=103 Oe. Graph :  -1 as a function of temperature and with different applied magnetic fields (1-101 Oe). Small 86K -> above ferroelectric transition Graph: Temperature dependence of complex dielectric constant. The CdCr 2 S 4 sample was measured to a frequency of 500 KHz, 1 and 5 MHz. Relaxor like behavior OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

8 Short range magnetic cluster (srmc) in the PM regime Linear correlation between electric and magnetic degrees of freedom Theoretical model Landau Thermodynamic model OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary Inverse magnetic susceptibility resulting from theoretical calculations of the Landau theory of phase transitions, considering linear magnetoelectric coupling.

V zz V zz – EFG Main component   – Asymmetry parameter B hf B hf – Magnetic hyperfine field V zz V zz – EFG Main component   – Asymmetry parameter B hf B hf – Magnetic hyperfine field CdCr 2 S In→ 111 Cd Cr/Cd Site 117 Cd→ 117 In Cd Site S IMILAR TO : NMR/NQRMES OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

10 EFG 1 EFG 1 -->  Q 1 =72 MHz and  1  0.1 EFG 2 EFG 2 -->  Q 2 =0 MHz (P Cd CUBIC SITE ) Representative R(t) functions, correspondent fits and respective Fourier transform. EFG temperature dependence parameters in the CdCr 2 S 4 system, the fraction of each EFG (top), asymmetry parameter (middle) and fundamental frequency (bottom). OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

F ROM 119K TO  92K: Dynamic Attenuation is observed  Dynamic Attenuation is observed  S LOW THERMALLY ACTIVATED PROCESS   E=0.1 eV A CTIVATION E NERGY (E a ) Representative R(t) functions, correspondent fits and respective Fourier transform. OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary order-disorder type phase transiction

r (Å) G (Å -2 ) The PDF results at 80 K of the spinel CdCr 2 S 4 structure (blue dots), as a solid red line (fit), with the difference curve (green) offset for clarity. G(r) is the scattering-length weight measure of the apart obtained via Fourier transform of the reduced total scattering structure function. OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary

r (Å) G (Å -2 ) The PDF results at 80 K of the spinel CdCr 2 S 4 structure (blue dots), as a solid red line (fit), with the difference curve (green) offset for clarity. Amplitude of the Cr local off-centering. The temperature dependence lattice parameter (blue dots) as obtained from Rietveld refinement, the red dashed line is a guide to the eye. The blue dots are the isotropic ADPs for Cr refined from undistorted model. The dashed-line (pink) represents the expected behavior from the Einstein-Debye model. OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary  r max < Å

OutlineMotivation Crystal Structure MacroscopiccharacterizationLocalCharacterizationSummary understanding of anomalous behavior as recently observed above TC Cr 3+ - Cr 3+ magnetic correlations polar nanoclusters Cr 3+ dynamic off-centering M(T) PAC PDF PAC  ’(T)

15 VII Jornadas do IFIMUP/IN G.N.P. Oliveira Faculdade de Ciências – Universidade do Porto Porto, 19 de Dezembro de 2011