NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.

Slides:



Advertisements
Similar presentations
YQ Liu, Peking University, Feb 16-20, 2009 Resonant Field Amplification Yueqiang Liu UKAEA Culham Science Centre Abingdon, Oxon OX14 3DB, UK.
Advertisements

West Lake International Symposium on Plasma Simulation; April, 2012 Influence of magnetic configuration on kinetic damping of the resistive wall.
ASC XP-823 Error Field Correction and Long Pulse J.E. Menard, S.P. Gerhardt Part 1 Determine the source of, and optimal correction for, the observed n=3.
TAE-EP Interaction in ARIES ACT-I K. Ghantous, N.N Gorelenkov PPPL ARIES Project Meeting,, 26 Sept
Lesson 17 Intro to AC & Sinusoidal Waveforms
NSTX S. A. Sabbagh XP615: Active Stabilization of the Resistive Wall Mode at Low Aspect Ratio  Goals (Part I):  Operate new RWM feedback system on 0.9–1.0.
Oscillators with LC Feedback Circuits
MHD Behaviour of Low-Aspect-Ratio RFP Plasmas in RELAX S.Masamune, T.Onchi, A.Sanpei, R.Ikezoe, K.Oki, T.Yamashita, H.Shimazu, N.Nishino 1), R.Paccagnella.
Physics of fusion power Lecture 10 : Running a discharge / diagnostics.
EXPERIMENTS OF ACTIVE QSH CONTROL IN EXTRAP-T2R L. Frassinetti, P.R. Brunsell, E.K.J Olofsson and J.R. Drake.
RFA Experiments on the T2R RFP Open loop control experiments J.R. Drake 1), D. Gregoratto 2), T. Bolzonella 2), P.R. Brunsell 1), D. Yadikin 1), R. Paccagnella.
NSTX The Resistive Wall Mode and Beta Limits in NSTX S. A. Sabbagh 1, J. Bialek 1, R. E. Bell 2, A. H. Glasser 3, B. LeBlanc 2, J.E. Menard 2, F. Paoletti.
9/20/04NSTX RESULTS REVIEW NSTX rtEFIT implementation progress results NSTX 2004 RESULTS REVIEW September 20&21, 2004 REAL-TIME EQUILIBRIUM RECONSTRUCTION.
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
JT-60U Resistive Wall Mode (RWM) Study on JT-60U Go Matsunaga 松永 剛 Japan Atomic Energy Agency, Naka, Japan JSPS-CAS Core University Program 2008 in ASIPP.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
S.A. Sabbagh for NSTX Macrostability TSG Macrostability TSG Suggested FY-12 Milestones – Address key ReNeW issues for ST development 1) Assess sustained.
1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
XP1518: RWM PID control optimization based on theory and experiment S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al…) Department of Applied Physics,
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
NSTX APS DPP 2008 – RWM Stabilization in NSTX (Berkery)November 19, Resistive Wall Mode stabilization in NSTX may be explained by kinetic theory.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
Workshop on MHD Control 2008 – O.Katsuro-Hopkins Computational analysis of advanced control methods applied to RWM control in tokamaks Oksana N. Katsuro-Hopkins.
Investigation of fast ion mode spatial structure in NSTX N.A. Crocker, S. Kubota, W.A. Peebles (UCLA); E.D. Fredrickson, N.N. Gorelenkov, G.J. Kramer,
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.
NSTX XP802 results - S.A. Sabbagh XP802: Active RWM stabilization system optimization and ITER support Goals  Alter active control configuration to achieve.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
MHD in the Spherical Tokamak MAST authors: SD Pinches, I Chapman, MP Gryaznevich, DF Howell, SE Sharapov, RJ Akers, LC Appel, RJ Buttery, NJ Conway, G.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
L. Zanotto – 10 February 2011 – RFX-mod programme workshop TF2: Active control of RFP and tokamak plasmas Report on experimental proposals L. Zanotto,
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
Steady State Discharge Modeling for KSTAR C. Kessel Princeton Plasma Physics Laboratory US-Korea Workshop - KSTAR Collaborations, 5/19-20/2004.
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
MARS analysis of rotational stabilization of the RWM in NSTX & DIII-D AT plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
1 NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 NSTX-U EFIT and RWM Control – Phys. Ops. Training Course Talk #17 (S.A. Sabbagh, et.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
SMK – XP 1 XP 811: Effect of Rotation on Energy/Impurity Confinement S. Kaye, L. Delgado-Aparicio Joule Milestone Description –XP directly addresses Joule.
A.C. Sontag - 19 th NSTX PAC Meeting Macroscopic Stability Research in NSTX A.C. Sontag Columbia University for the NSTX Research Team 19 th NSTX Program.
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.
3/2 NTMs, XP 834, X/X/20081 XP 834: Threshold and Small Island Physics of the 3/2 NTM S.P. Gerhardt, D. Gates Helpful discussions with E. Fredrickson,
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
1 ISTW 2015: Global MHD Mode Stabilization and Control for Disruption Avoidance ISTW 2015: Global MHD Mode Stabilization and Control for Disruption Avoidance.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
NSTX SAS – GMS Mtg. 12/1/04 S. A. Sabbagh and J. E. Menard NSTX RWM Active Feedback System Implementation Plan Discussion NSTX Global Mode Stabilization.
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
XP723: Momentum transport and the effect of rotation on confinement Make use of n=3 NRMP for rotation braking in various degrees Steady-state application:
1 MP Isolation of NTV - * variation, offset 10/6/15 – S.A. Sabbagh, Y.-S. Park, (Columbia U.), Y. Jeon, (NFRI) et al. MP :
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
Dr. Michael Nasief.  Rotating electrical machines (ac generators)  Electronic oscillator circuits.
Overview of PPPL Field Work Proposal Opportunities in Macroscopic Stability J. Menard for the MHD Science Focus Group Tuesday, November 22, 2005 Supported.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
T. Markovič1,2, P. Cahyna1, R. Panek1, M. Peterka1,2, P. C
J. Menard for the MHD Science Focus Group Tuesday, November 22, 2005
Influence of energetic ions on neoclassical tearing modes
Stabilization of m/n=1/1 fishbone by ECRH
Presentation transcript:

NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX plasmas RFA dependence on  N measured  RFA is also dependent on frequency of applied resonant field RFA vs. frequency and associated phase shift inconclusive in XP452  imprecise control of applied field due to large ripple (no SPA) Only standing wave perturbations could be applied  First attempt at RWM stability control using full RWM coil capability  Plasma response to pre-programmed resonant field a necessary precursor study for future active RWM control examine RWM phase locking to applied field behavior of n > 1 RWM and/or RFA to n = 1 applied field

NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Goals  Examine RWM physics at marginal stability Use more precise plasma rotation control by RWM coil/SPA to control proximity to / violation of RWM critical rotation frequency Measure RWM rotation at marginal stability; RWM growth/damping rates Examine phase coupling of rotating RWM to applied field  Perform MHD spectroscopy on passively stabilized plasmas Find RFA amplitude / phase response to applied field rotation frequency Compute stable RWM growth/damping rate and mode rotation frequency  Compare measured values to single mode model fit, and theory Determine RFA amplitude / phase shift vs.  N in longer pulse target  Look for low frequency mode resonances by varying frequency of applied RWM coil perturbation by varying frequency of power systems to shaping coils

NSTX S. A. Sabbagh Resonant Field Amplification increases at high  N  Plasma response to applied field from initial RWM stabilization coil pair  AC and pulsed n = 1 field  RFA increase consistent with DIII-D  Stable RWM damping rate of 300s -1 measured in NSTX NN  N no-wall (n = 1) plasma  B p / applied B p DIII-DNSTX

S. A. Sabbagh RFA is observed to be dependent on applied field frequency H. Reimerdes, et al., EPS Meeting  Fit to RFA amplitude / phase data yields  stable RWM damping rate  mode rotation frequency  “Single mode” empirical RWM model typically used  is this applicable for NSTX with n > 1 RWM response?  Will NSTX results be consistent with theory (e.g. Fitzpatrick-Aydemir)?

NSTX S. A. Sabbagh Spectroscopy XP expands upon experiments in other devices  Generate relatively long pulse target with  N >  Nno-wall  follows 2004 NSTX XP452  Scan applied n=1 field frequency  utilize CY2005 RWM coil capabilities Only requires pre programmed modulated n=1 field  Compare RFA to theory / other devices  dependence on frequency,  N  NSTX can compare measured RWM rotation frequency to fitted model and theory  Scans to examine resonances  might be more complex than “single mode” model allows MHD spectroscopy in DIII-D (H. Reimerdes et al.)

NSTX S. A. Sabbagh Duration and Required / Desired Diagnostics  XP could be completed in run days  for n=1 applied field (additional time needed for n=2 applied field)  will provide important information for other RWM XPs  Required  Magnetics for equilibrium reconstruction  Internal RWM sensors  CHERS toroidal rotation measurement  Thomson scattering  Diamagnetic loop  Desired  USXR diagnostic at two toroidal positions  MSE  Toroidal Mirnov array

NSTX S. A. Sabbagh XP501: MHD spectroscopy of high beta plasmas - Run plan TaskNumber of Shots 1) Determine marginal stability point vs. applied DC field (toroidal rotation dropping below critical rotation frequency) A) Vary applied current, zero rotation of applied field, DC square wave pulse: (i) 2 to 3 NBI sources (step up or down), longest possible pulse with  N /  Nno-wall > 11 (ii) Apply RWM coil current in steps until RWM is destabilized (gives  crit scan too)4 (iii) 1.5 or 2 NBI sources (  N /  Nno-wall < 1) in above to compare1 2) Determine RFA dependence on applied field rotation frequency and  N A) Vary applied field rotation frequency: (Apply rotating field early (  N /  Nno-wall < 1) through planned end of discharge) (i) NBI sources, vary applied field frequency -60, 60, -40, 40, -10, 10 Hz6 (ii) NBI sources, vary applied field frequency to best fill in data above6 B) 1 NBI source at GMS frequency that produced maximum RFA amplitude1 3) Determine RFA behavior and mode dynamics near marginal stability A) Vary applied current, applied field rotating at max. RFA from step (2) + DC offset: (Apply rotating field early (  N /  Nno-wall < 1) through end of discharge) (i) Vary applied field DC offset in steps until RWM is destabilized3 (ii) Finer applied field frequency scan (3 more points)3 B) Decrease RWM coil current to below marginal stability, vary PF MG set frequency4 4) Vacuum field shots for each frequency used (if necessary)3 5) (Optional) repeat the most successful trials above with n = 2 applied field (optional 20) Total: 32

NSTX S. A. Sabbagh Schematic Waveforms for GMS coil – XP501  Schematic waveforms based on XP X10 Amps (arb) Time (Seconds) Source B Source C – timing varies with Ip Default NBI timing Plasma current Source A GMS coil current x (vary  N, constant pulse) 3 (vary frequency, constant  N ) B t = 3kG plan