Microbiology- a clinical approach by Anthony Strelkauskas et al. 2010 Chapter 7: Principles of disease.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Active Lecture Questions Chapter 14 Principles of Disease and Epidemiology.
Advertisements

Infectious Diseases.
Infectious Diseases. Pathogens: Microorganisms that are capable of causing disease Pathogens: Microorganisms that are capable of causing disease Infection:
1.1 Pathogens. Starter What is health? A state of complete physical, mental and social well- being. What is disease? A description of symptoms which suggest.
CHAPTER 7 PRINCIPLES OF DISEASE © Andy Crump / Science Photo Library.
CHAPTER 7 PRINCIPLES OF DISEASE
Define a Few Words: Pathogen Pathology Pathologist Pathogenicity Pathogenesis.
Principles of Disease and Epidemiology
Infectious Diseases Image References
III. Infection and Disease
By C Kohn Agricultural Sciences Waterford, WI
Updated February 2015 J. D. Hendrix. A. Definitions B. The Normal Flora of Humans C. Generalized Stages of Infection D. Virulence Factors and Toxins.
Principles of Disease and Epidemiology
Chapter 14 Principles of Disease and Epidemiology
Physiology: The Immune System Rahul V Sara S Joe A Jasper C.
Chapter 19-3: Diseases Caused by Bacteria and Viruses
Host-Microbe Interactions Chapter 14. Disease Etiology Pathogen –Primary vs. opportunistic Virulence.
Chapter 14 Pathology. Definitions! Pathology – study of disease Etiology – cause of disease Pathogenicity – how a pathogen overcomes host defenses to.
Pathogens Mr. Mah Living Environment Lecture 11. Warm-Up Take 3 minutes to write down as many diseases/illnesses you can think of! Now, put a dot beside.
Vaccination. Vocabulary Check Vaccination: conferring immunity to a disease by injecting an antigen (of attenuated microorganisms or inactivated component)
The Complete Diagnosis Coding Book by Shelley C. Safian, MAOM/HSM, CCS-P, CPC-H, CHA Chapter 11 Coding Infectious Diseases Copyright © 2009 by The McGraw-Hill.
Nature of Disease Introduction - Definitions Normal Bacteria & Host Koch’s Postulates Patterns of Disease Spread of Infection Nosocomial Infections.
Prof.Hanan Habib Department of Pathology & laboratory medicine, Microbiology Unit, KSU Host-Parasite Relationship )
Lecturer name: Prof.Hanan Habib, Dr. Ali Somily & Prof A.M. Kambal Department of Pathology, Microbiology Unit Lecture Title: HOST PARASITE RELATIONSHIP.
Lecturer name: Prof.Hanan Habib & Prof A.M. Kambal Department of Pathology, Microbiology Unit Lecture Title: Host-Parasite Relationship (Foundation Block,microbiology.
Factors That Influence Epidemics Transmission and The Role of Nurses in the Identification of an Epidemic.
Pathology - the scientific study of the nature of disease and its causes A PATHOGEN is any disease causing agent. Quick Exercise: How many diseases can.
Chapter 40-1: Infectious Disease
HOST–MICROBE RELATIONSHIPS AND DISEASE PROCESSES
9/10/2010Dr. Salwa Tayel19/10/2010Dr. Salwa Tayel1.
Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Commensal and Pathogenic Microbial Flora in Humans
The Complete Diagnosis Coding Book by Shelley C. Safian, MAOM/HSM, CCS-P, CPC-H, CHA Chapter 11 Coding Infectious Diseases Copyright © 2009 by The McGraw-Hill.
Pathogenicity of Infectious Diseases. PATHOGENENVIRONMENT HOST DISEASE TRIAD Host-Parasite Interactions OTHER MICROBES Microbial Interactions.
Pathogenesis of Infectious Diseases CLS 212: Medical Microbiology.
Host Parasite Relationship
23/10/2010Dr. Salwa Tayel1. 23/10/2010Dr. Salwa Tayel2 Associate Professor Family and Community Medicine Department King Saud University By Infectious.
Establishing Infection In order to cause disease pathogen must follow a series of steps: – Adherence – Colonization – Delivery of effector molecules 1.
Notes: Spread, Treatment, and Prevention of Disease
Lesson Overview Lesson Overview Diseases Caused by Bacteria and Viruses Lesson Overview 20.3 Diseases Caused by Bacteria and Viruses.
Why do we fall ill?. What will happen if kidney stops filtration of blood?
Infection and Infectious disease. Pathology is the scientific study of disease. Etiology: Cause of disease. Infection: the invasion or colonization of.
Ch 14 Principles of Disease and Epidemiology.
Principles of Disease and Epidemiology
Infection and Infectious disease. Diseases are often classified in terms of how they behave within a host and within a given population. Classification.
DVD: Contagion A brief study of epidemiology …. DVD: Contagion Infectious: capable of spreading disease. also known as communicable.
Immunity –Disease – any change that disrupts body’s internal regulation (homeostasis) –Pathogen – anything that causes disease  Ex. Virus, bacteria, fungi,
Section 3: Bacteria, Viruses, and Humans
Ch Epidemiology Microbiology.
Viral pathogens and Vaccination
Microbe-Human Interactions: Infection and Disease
Bacteria and Disease Biotechnology.
Prevention & Control of Infectious Diseases
Pathogenesis of Infectious Diseases
Microbial Flora of the Human Body
Principles of Disease and Epidemiology
BASIC TERMINOLOGY BASIC TERMINOLOGY ANTIBIOTICS-chemical substances produced by microorganisms that are capable of killing other microorganisms ANTISEPTIC-a.
Viral pathogens and Vaccination
Bacteria and Viruses Diseases & Disorders.
Pathology: Study of disease Pathogenesis: Development of disease
HOST–MICROBE RELATIONSHIPS AND DISEASE PROCESSES
Microbes and Disease.
HOST-MICROBE RELATIONSHIPS AND DISEASE PROCESSES
Symbioses Mutualism Commensalism Parasitism Opportunism.
Lecturer name: Prof .Hanan Habib & Prof A.M. Kambal
Principles of Disease and Epidemiology
Host Parasite Relationship
Pathology, Infection, and Disease
Presentation transcript:

Microbiology- a clinical approach by Anthony Strelkauskas et al Chapter 7: Principles of disease

 How diseases are caused (etiology), how they can be characterized, and the concepts of sepsis and shock are important for developing an in-depth understanding of infections.  It is important to understand the differences between normal microbial flora and abnormal or infectious microbial organisms.

 A disease is any negative change in a person’s health. ◦ What is health?  Etiology is the cause of a disease.  Normal microbiota consists of useful microorganisms colonizing our external and internal body surfaces. 1.Health is the absence of any disease or impairment. 2.Health is a state that allows the individual to adequately cope with all demands of daily life. 3.Health is a state of balance, an equilibrium that an individual has established within himself and between himself and his social and physical environment.

and causing organ damage

and many gram negative anaerobic bacteria and many anaerobic bacteria

 Can protect us through microbial antagonism ◦ Many bacteria produce bacteriocins which are localized bacterial antibiotics. ◦ Bacteriocins can kill invading organisms but do not affect the bacteria that produce them.  Produces vitamins (Vit K and B)  Stimulates and trains our immune system  Can become pathogenic ◦ In an immunocompromised host ◦ When inoculated at a different body site  E. coli is part of the normal flora of the digestive tract but can cause infection if it enters the urinary tract.

 Etiology is the cause of disease.  Proof of etiology of infectious diseases can be found using Koch’s postulates. ◦ 1: The same pathogen must be present in every case of the disease and absent in the healthy. ◦ 2: The pathogen must be isolated and grown in pure culture. ◦ 3: When inoculated into a healthy new host the pure pathogen must cause the same disease. ◦ 4: The pathogen must be re-isolated from these newly infected hosts.

 In some cases, Koch’s postulates cannot be used.  Some microorganisms cannot be grown in pure culture on agar media in the laboratory: ◦ Treponema pallidum (syphilis) ◦ Mycobacterium leprae (leprosy) ◦ Viruses and rickettsial organisms  Polymicrobial infections  One microorganism can cause multiple diseases.

1. Viral infection 2. The results seen after a disease occurs. 3. The cause of the disease. 4. The portal of exit. 5. None of the above.

1. Acute disease 2. Latent disease 3. Chronic disease 4. Secondary infection 5. Systemic infection

 There are five specific phases 1. Incubation period – the time between the initial infection and the first symptoms. The more virulent the pathogen, the shorter the incubation time. 2. Prodromal period – when the first mild and rather general symptoms appear. 3. Period of illness-most severe signs and symptoms and rather specific 4. Period of decline- symptoms and signs decline, secondary infections may arise. 5. Period convalescence- no signs or symptoms but patient is not yet fully restored.

 Some diseases are communicable. ◦ They can spread from one person to another.  Some diseases are not communicable. ◦ They cannot spread from one person to another and simply remain within the infected host.  Some communicable diseases are easily spread from person to person and these are referred to as being contagious. ◦ They spread very easily through contact with an infected person.

 Isolation: ◦ It prevents an infected individual from having contact with the general population ◦ Patients are usually isolated in the hospital ◦ Can be difficult to achieve as it cannot be imposed until firm diagnosis  Quarantine: ◦ Exposed humans or animals are separated from the general population while they still appear healthy. ◦ Lasts as long as the incubation period for the disease in question ◦ If there are no longer any symptoms, the quarantine is lifted ◦ Rarely used today because it is difficult to enforce  Vector control: ◦ It is used to control the population of vectors, such as mosquitoes, that carry pathogens.

 Herd immunity is an important concept in limiting the spread of infection.  It is conferred to people through vaccination or if they are naturally exposed to the infection and prevents re-infection by the same pathogen.  When a majority of a population (herd) is immune to an infection there are very few potential hosts and the disease essentially disappears.  Good examples of herd immunity are polio and smallpox.

 Current herd immunity for polio is high. ◦ The polio vaccine is routinely administered to children so there are few targets available for infection.  Current herd immunity for smallpox is low. ◦ Smallpox has been putatively wiped out worldwide. ◦ As a result, no one is vaccinated for this infection anymore except for the military. ◦ Since vaccinations have ceased, the number of people immune to small-pox is low and there are many potential targets available for infection.

 Disease duration can vary depending on the overall health of the host.  There are four categories of disease duration: ◦ Acute diseases develop quickly and last only a short time e.g. measles. ◦ Chronic diseases develop slowly but last for a long time e.g. tuberculosis, hepatitis B. ◦ Sub-acute diseases have an gradual onset (usually 6 to 12 months) and are almost always fatal e.g. sclerosing pan- encephalitis. ◦ Latent diseases remain in the host after the symptoms disappear and can become reactivated years later e.g. chicken pox/shingles.

 Some pathogenic bacteria are capable of maintaining infections in hosts, even in the presence of inflammatory and specific antimicrobial mechanisms as well as a perfectly good immune response.  Persistent bacterial infections are treated with specific antimicrobial therapy.  Examples of persistent bacterial infections include: ◦ Mycobacterium tuberculosis (causes tuberculosis) ◦ Salmonella enterica serovar Typhi (causes typhoid fever)

 Infections can be localized. ◦ A local infection is contained (walled off) such as a boil or an abscess. ◦ Local infections are the easiest to deal with medically.  Infections can be systemic. ◦ Systemic infections occur when pathogens move away from the initial infection location (also known as the focus of infection). ◦ This movement is usually associated with the blood or the lymphatic system.

 Bacteremia – bacteria present in the blood  Septicemia – bacteria multiplying in the blood with organ spread and organs dysfunction  Toxemia – toxins in the blood  Viremia – viruses in the blood howshealth.com

 Primary – the initial infection which has acute onset of symptoms.  Subclinical – no symptoms are visible even though the person is infected ◦ These people are carriers of the disease and can infect others.  Secondary – seen in people that are already weakened from a primary infection. Secondary infections are caused by another microorganism and can be more dangerous.  Example: Influenza virus causing flu and subsequent infection with Haemophilus influenzae

 Normal microbiota helps to protect against opportunistic pathogens.  Etiology is defined as the cause of a disease.  Koch’s postulates can be used to evaluate and identify the etiology of a disease.  Disease can be acute, chronic, sub-acute, or latent/ persistent.  Examples for infections that may become latent and persistent are tuberculosis (Mycobacterium tuberculosis) and typhoid fever ( Salmonella enterica serovar Typhi ).  Infection can be local or systemic, primary or secondary

1. Quarantine 2. Isolation 3. Herd immunity 4. Treat with antibiotics. 5. None of the above.

1. Mycobacterium tuberculosis in the lungs 2. Salmonella enterica serovar Typhi surviving in the gallbladder 3. Saprophytic bacteria surviving on sloughed cells of the ear 4. Chlamydia species surviving in epithelial cells of the genital tract 5. Bacteria in the colon providing vitamins K and B

 11:45pm – 1:20pm  Chapters 1 thru 6: Lecture, Reading, Chapter End Self Study Questions  Twenty-five Multiple Choice Questions = 50 points  Please bring: ◦ Scantron (form No. 882-E for the Quiz – available at no cost at the Student Bookstore) ◦ No. 2 pencil only