Zerguerras T. – IPNO – RDD – 14/06/2013 RD51 Collaboration Meeting July, Zaragoza 5-6th 2013 1/12 New results on gas gain fluctuations in a Micromegas.

Slides:



Advertisements
Similar presentations
Parallel Ionization Multiplier (PIM) : a multi-stage device using micromeshes for tracking particles MPGD’s Workshop at NIKHEF April 16th2008 April 16th.
Advertisements

Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Micromegas studies using cosmic rays Franck Sabatié May 7th 2009 Saclay cosmic ray bench Data acquisition system and analysis tools MIP detection Position.
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Prototype TPC Tests C. Lu 12/9/98 V = 0. Gas gain test for the low pressure chamber The chamber is constructed with the following parameters: D anode.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Techniques for detecting X-rays and gamma-rays Pair production Creation of elementary particle and its antiparticle from a photon. Occurs only if enough.
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
New Developments in Large Area THGEMs & APV Exercise INFN – Sezione di Trieste Carlos Alexandre Fernandes dos Santos 11/December/2014.
Systematic studies on the rate capability of MWPC operated in Xe/CO 2 D. Gonzalez-Diaz for the CBM-TRD group March, 2008.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
1 NA58 RICH Test Beam T10 sept.2014 Fulvio Tessarotto – Stefano Levorato Partecipants: Alessandria, Aveiro, Budapest, Calcutta, Freiburg, Liberec, Prague,
Ionization Detectors Basic operation
2nd RD51 Collaboration Meeting, Paris, October PENNING TRANSFERS Ozkan SAHIN Uludag University Physics Department Bursa -Turkey 2nd RD51 Collaboration.
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
1 IBF in aligned, misaligned and FLOWER THGEMs The IBF problem Standard THGEM configuration COBRA and extra electrode Misaligned holes FLOWER THGEM solution.
Digital primary electron counting: W, Fano Factor, Polya vs Exponential M. Chefdeville, NIKHEF, Amsterdam RD51, Paris, October 2008.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
15th RD51 Collaboration Meeting 18 – 20 March 2015 CERN On the way to sub-100ps timing with Micromegas T. Papaevangelou IRFU / CEA Saclay.
June 22, 2009 P. Colas - Analysis meeting 1 D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay) Analysis of Micromegas Large Prototype data.
Piggyback seal Micromegas D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas, J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
PNPI, R&D MUCH related activity ● Segmentation ● Simulation of the neutral background influence ● R&D of the detectors for MUCH ● Preparation to the beam.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
The effect of surface roughness
High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI
Micromegas for the Central Tracker Sébastien Procureur CEA-Saclay.
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
Argon Purity: Fundamentals Where: [e] – electron concentration [S] – concentration of electronegative impurities k s - attachment rate constant [P] – concentration.
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
MPGD (RD-51) Workshop Nikhef, Amsterdam, April Penning Effect on Gas Amplification Factor Ozkan SAHIN Uludag University Physics Department.
1 MPGD2009 Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD J. Donnard a, N.Arlicot b,
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
Mesh transparancy and gas gain studies in micromegas detectors Fabian Kuger University of Würzburg, Germany July 06 th 2013 RD 51 Collaboration Meeting.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 Fulvio TESSAROTTO GDD meeting, CERN, 01/10/2008 Trieste THGEM news New THGEM test in the COMPASS hall New THGEM test in the COMPASS hall Preparation.
Özkan ŞAHİN Uludağ University Physics Department Bursa – TURKEY Survey of transfer rates using Zaragoza (Xe – TMA) and Krakow (Ar – CO 2 ) measurements.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
R&D Collaboration, CERN – September 10, Micromegas Performance and Ageing studies David Attié MPGD. Towards an R&D Collaboration,
Zerguerras T. – IPNO – RDD – 09/06/2015 Seminar at the CEA, Saclay, June 9th /40 Understanding avalanches in Micro- Pattern Gaseous Detectors from.
CdTe prototype detector testing Anja Schubert The University of Melbourne 9 May 2011 Updates.
RPCs with Ar-CO2 mix G. Aielli; R.Cardarelli; A. Zerbini For the ATLAS ROMA2 group.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Systematic studies for microbulk detectors E. Ferrer Ribas, A. Giganon, Y. Giomataris, FJ Iguaz, T. Papaevangelou (Saclay) A. Gris, R. de Oliveira (CERN)
Energy resolution results for Microbulk MICROMEGAS at high energy and pressure. Alfredo Tomás Alquézar Universidad de Zaragoza on behalf of the collaboration.
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
-Stephan AUNE- RD51 BARI. Saclay MPGD workshop R&D 09/10/20101 Saclay workshop R&D for new Bulk structure.
Thick-GEM sampling element for DHCAL: First beam tests & more
Max Chefdeville, NIKHEF, Amsterdam
Activities on straw tube simulation
Hybrid MPGD based photon detector, R&D update.
Mesh transparancy and gas gain studies in micromegas detectors
3g Medical Imaging R&D with liquid xenon Compton telescope
Avalanche flutuations with InGrid/TimePix
Ionization detectors ∆
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
BESIII EMC electronics
réponse d’un détecteur Micromegas
Gain measurements of Chromium GEM foils
Presentation transcript:

Zerguerras T. – IPNO – RDD – 14/06/2013 RD51 Collaboration Meeting July, Zaragoza 5-6th /12 New results on gas gain fluctuations in a Micromegas detector Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud Orsay cedex Tél. : Fax : T. Zerguerras, B. Genolini, M. Imré, M. Josselin, A. Maroni, T. Nguyen Trung, J. Pouthas, E. Rindel, P. Rosier, L. Séminor, D. Suzuki, C. Théneau

Zerguerras T. – IPNO – RDD – 14/06/2013 2/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 A Laser test bench for MPGD study - MPGD characterization with a point-like electron source ( <100 µm) of variable intensity produced by a 337nm UV laser. - Study performed with a prototype for the ACTAR (ACTive TARget) project Laser Conversion gap (1.6 mm) Amplification gap (160 µm) X Photon Quartz lamina with a 0.5nm-thick Ni-Cr layer Micromegas Ni mesh Anode Micromegas PMT Laser optics Optical fiber Energy resolution following the number of primary electrons N 0 a :laser intrinsic constant F las : N 0 fluctuations from f and ( f + F las ) Single Electron Response Relative gain variance : f = 0.30 ± 0.01 Gain= e - 1 e - 1) 2) Electronic: Gassiplex (2 000 e - rms) T. Zerguerras et al., NIM A 608 (2009) 397 Ne 95% iC4H10 5%

Zerguerras T. – IPNO – RDD – 14/06/2013 3/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Improvements in 2013 Simplified geometry : - Complex anode pad plane geometry - Position of the 55 Fe source Lower noise level: - Lower limit of gain at ~ for SER measurements - Only for high-gain gas mixtures (ex: Ne:iC 4 H 10 95:5) Redesigned detector Simplification of the anode plane segmentation Change Front-End Electronics Adapt the electronics chain Lower pressure: Pressure regulation and control system for studies at lower pressure

Zerguerras T. – IPNO – RDD – 14/06/2013 4/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Detector improved Conversion gap: 3,2mm Amplification gap: 160µm Mesh: Buckbee Myers © 333 lpi nickel electroformed micromesh 5mm 10mm Anode: 3 pads Change of the mechanics and simplification of the anode pad plane geometry Improvement of electronics S/N ratio Cremat CR-110 PAC Gain: 1.4V/pC Noise : 200 e - RMS (table) 380 e - RMS (detector) + CAEN N568B Spectroscopy Amplifier (CG, FG fixed, SH=3µs, PZ fixed, Offset fixed) Pressure control system Calibration through a high-precision 1pF capacitance at the channel test-input

Zerguerras T. – IPNO – RDD – 14/06/2013 5/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Measurement with a 55 Fe source Ar 95% iC 4 H 10 5%, 750 torrs, V d = 738V V mesh = 450V, CG 5 21% Ne 95% iC 4 H 10 5%, 750 torrs, V d = 718V V mesh = 430V, CG 2 14%

Zerguerras T. – IPNO – RDD – 14/06/2013 6/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Method for Single-Electron Response (SER) measurement - The laser is focused on the drift electrode in front of the central pad - A light-attenuator of factor 100 is put at the output of the laser box. Trigger: XP2282B anode signal - Trigger: XP2282B anode signal Proportion of non-zero events (outside pedestal) is < 5% - Proportion of non-zero events (outside pedestal) is < 5% - The anode charge is measured to monitor the laser light intensity (variation < 4%) The CG of the N568B Spectroscopy Amplifier is adjusted depending on - The CG of the N568B Spectroscopy Amplifier is adjusted depending on the mesh voltage, all the other parameters being fixed the mesh voltage, all the other parameters being fixed -The drift field is of 900V/cm -Gas mixtures: Ar 95% iC 4 H 10 5%, Ne 95% iC 4 H 10 5%, He 95% iC 4 H torrs -To avoid any damage on the CR-110 chips, the maximum voltage applied on the mesh was 10V below the sparking limit voltage

Zerguerras T. – IPNO – RDD – 14/06/2013 7/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Single-Electron Response Gain < 10 4 G =  = 0.8 ± 0.1 f = 0.56 ± 0.03 Ar 95% iC 4 H 10 5%, V mesh =450V, CG 7 G =  = 2.0 ± 0.1 f = 0.33 ± 0.01 Ne 95% iC 4 H 10 5%, V mesh = 390V, CG 6 He 95% iC 4 H 10 5%, V mesh = 420V, CG 7 G =  = 1.7 ± 0.3 f = 0.37 ± 0.03 Gain: G Relative gain variance: f =1/1+  Sum of a Polya distribution: and a Gaussian (pedestal) fitted on data

Zerguerras T. – IPNO – RDD – 14/06/2013 8/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Single-Electron Response 10 4 < Gain < < Gain < 10 5 G =  = 2.0 ± 0.1 f = 0.33 ± 0.01 Ne 95% iC 4 H 10 5%, V mesh = 470V, CG 4 Ar 95% iC 4 H 10 5%, V mesh = 490V, CG 6 G =  = 0.7 ± 0.1 f = 0.59 ± 0.03 Polya distribution fitted on data Gain: G Relative gain variance: f =1/1+  G =  = 1.9 ± 0.2 f = 0.34 ± 0.02 He 95% iC 4 H 10 5%, V mesh = 500V, CG 4 Maximum achievable gain before sparking

Zerguerras T. – IPNO – RDD – 14/06/2013 9/12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Single-Electron Response Gain > 10 5 Gain > 10 5 G =  = 1.7 ± 0.1 f = 0.37 ± 0.01 Ne 95% iC 4 H 10 5%, V mesh = 520V, CG 2 G =  = 1.6 ± 0.2 f = 0.38 ± 0.03 He 95% iC 4 H 10 5%, V mesh = 550V, CG 2 Maximum achievable gain for both gas mixtures.

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Gain comparison The maximum achievable gain is 10 times higher in Ne 95% iC 4 H 10 5% than in Ar 95% iC 4 H 10 5%. For a given mesh voltage, the gain is about 7 (resp. 2) times higher in Ne 95% iC 4 H 10 5% than in Ar 95% iC 4 H 10 5% (resp. He 95% iC 4 H 10 5% ).

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Relative gain variances -In the measurement range, the relative gain variance f is rather independent of the gain. -For the same gain value, f is almost twice higher in Ar 95% iC 4 H 10 5% than in the two other mixtures. -As a consequence of their higher ionization yields, lighter gases have a lower value of f H. Schindler, S.F. Biagi and R. Veenhof, NIM A 624 (2010) (H. Schindler, S.F. Biagi and R. Veenhof, NIM A 624 (2010) 78-84). - In the present study, gas mixtures with lower relative gain variance have higher sparking limits. Lower limit of 2009 study: ~

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Conclusions Single-Electron Response (SER) can be measured After the test-bench improvements, Single-Electron Response (SER) can be measured down to gains of ~ Relative gain variances of three binary gas mixtures (Ar, Ne, He + 5% iC 4 H 750 torrs ) are deduced from the SER of a Micromegas detector. the relative gain variance is almost twice higher in the Ar-based mixture For a given gain, the relative gain variance is almost twice higher in the Ar-based mixture The maximum achievable gain in the Ar-based mixture (~ ) is ten times lower than in the Ne and He-based mixtures Comparisons with calculations are needed Comparisons with calculations are needed (discussion with WG4) and could help quantifying Penning effect in the three tested mixtures. Other parameters are worth of interest for further measurements Other parameters are worth of interest for further measurements: nature and proportion of quencher, pressure, type of mesh, amplification gap thickness …

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Backup Slides

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Relative gain variance calculations H. Schindler, S.F. Biagi and R. Veenhof, NIM A 624 (2010) 78.

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Ionization yield calculations for pure rare gases H. Schindler, S.F. Biagi and R. Veenhof, NIM A 624 (2010) 78.

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Neon Electron scattering cross-sections Argon H. Schindler, S.F. Biagi and R. Veenhof, NIM A 624 (2010) 78.

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Log(G)= d/ x exp(-I e / E amp ) Ne 95% iC 4 H 10 5% :  = / µm I e = /- 0.1 eV Pure Neon: I e = 21.6eV Ar 95% iC 4 H 10 5% :  = / µm I e = /- 1.2 eV Pure Ar: I e = 15.8eV d: amplification gap  electron mean-free path  I e : energy ionisation threshold E amp : amplification field F.J. Iguaz et al., 2012 JINST 7 P04007 following F.J. Iguaz et al., 2012 JINST 7 P04007 He 95% iC 4 H 10 5% :  = / µm I e = /- 0.3 eV Pure Helium: I e = 24.6eV Rose-Korff parameterisation

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Photon-absorption cross-sections O. Sahin et al., 2010 JINST 5 P05002

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 different CG values G =  = 2.3 ± 0.1 f = 0.30 ± 0.01 Ne 95% iC 4 H 10 5%, V mesh = 480V, 750 torrs CG 2 CG 3 G =  = 2.2 ± 0.1 f = 0.31 ± 0.01 CG 4 G =  = 2.0 ± 0.1 f = 0.33 ± 0.01 CG 5 G =  = 2.2 ± 0.1 f = 0.31 ± 0.01

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 A pulse signal is injected on the test input of the central pad (Pad_C) through a 1pF capacitance Electronic chain calibration

Zerguerras T. – IPNO – RDD – 14/06/ /12 RD51 Collaboration Meeting, Zaragoza, 5-6th July 2013 Electronic chain calibration