THE DEFINITE INTEGRAL RECTANGULAR APPROXIMATION, RIEMANN SUM, AND INTEGRTION RULES.

Slides:



Advertisements
Similar presentations
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Advertisements

Riemann sums, the definite integral, integral as area
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
The Definite Integral.
The Integral chapter 5 The Indefinite Integral Substitution The Definite Integral As a Sum The Definite Integral As Area The Definite Integral: The Fundamental.
Definite Integrals Sec When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width.
Chapter 5 .3 Riemann Sums and Definite Integrals
Georg Friedrich Bernhard Riemann
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
First Fundamental Theorem of Calculus Greg Kelly, Hanford High School, Richland, Washington.
State Standard – 16.0a Students use definite integrals in problems involving area. Objective – To be able to use the 2 nd derivative test to find concavity.
Lets take a trip back in time…to geometry. Can you find the area of the following? If so, why?
5.2 Definite Integrals. Subintervals are often denoted by  x because they represent the change in x …but you all know this at least from chemistry class,
Summation Notation Also called sigma notation
If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation.
Chapter 5 – Integrals 5.1 Areas and Distances Dr. Erickson
Summation Notation Also called sigma notationAlso called sigma notation (sigma is a Greek letter Σ meaning “sum”) The series can be written.
5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.1 Estimating with Finite Sums Greenfield Village, Michigan.
Chapter 5 – The Definite Integral. 5.1 Estimating with Finite Sums Example Finding Distance Traveled when Velocity Varies.
The Definite Integral.
Time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we.
5.2 Definite Integrals Bernhard Reimann
Dr. Omar Al Jadaan Assistant Professor – Computer Science & Mathematics General Education Department Mathematics.
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
Distance Traveled Area Under a curve Antiderivatives
5.2 Definite Integrals. When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width.
5.1 Estimating with Finite Sums Objectives SWBAT: 1) approximate the area under the graph of a nonnegative continuous function by using rectangular approximation.
Calculus Date: 3/7/2014 ID Check Obj: SWBAT connect Differential and Integral Calculus Do Now: pg 307 #37 B #23 HW Requests: SM pg 156; pg 295 #11-17 odds,
Estimating area under a curve
Ch. 6 – The Definite Integral
5.1 Estimating with Finite Sums. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec.
Riemann Sums and The Definite Integral. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3.
SECTION 4-2 (A) Application of the Integral. 1) The graph on the right, is of the equation How would you find the area of the shaded region?
RIEMANN SUMS AP CALCULUS MS. BATTAGLIA. Find the area under the curve from x = 0 to x = 35. The graph of g consists of two straight lines and a semicircle.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
AP CALC: CHAPTER 5 THE BEGINNING OF INTEGRAL FUN….
5.2 Definite Integrals Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
Riemann Sum. When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle.
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
Slide 5- 1 What you’ll learn about Distance Traveled Rectangular Approximation Method (RAM) Volume of a Sphere Cardiac Output … and why Learning about.
4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
The Fundamental Theorem of Calculus Area and The Definite Integral OBJECTIVES  Evaluate a definite integral.  Find the area under a curve over a given.
Riemann Sums A Method For Approximating the Areas of Irregular Regions.
Application of the Integral
Chapter 5 Integrals 5.1 Areas and Distances
5.1 Estimating with Finite Sums
Riemann Sums and The Definite Integral
Chapter 5 AP Calculus BC.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.1 Estimating with Finite Sums
A Method For Approximating the Areas of Irregular Regions
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.1 Estimating with Finite Sums
Lesson 5-1: Estimating with Finite Sums
4.2/4.6 Approximating Area Mt. Shasta, California.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 4.3 Riemann Sums and The Definite Integral
5.5 Area as Limits Greenfield Village, Michigan
5.1 Estimating with Finite Sums
6.2 Definite Integrals.
5.1 Estimating with Finite Sums
6.1 Estimating with Finite Sums
Areas and Distances In this handout: The Area problem
Presentation transcript:

THE DEFINITE INTEGRAL RECTANGULAR APPROXIMATION, RIEMANN SUM, AND INTEGRTION RULES

time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we draw a graph of the velocity, the distance that the object travels is equal to the area under the line.

Heck – it’s a triangle! That’s easy! Consider this same object moving at a varying rate defined by the function f(x) = x Distance is still found using rate. time = distance: That means the area under the curve STILL represents the distance traveled, but since we don’t have a constant rate, how could we find that area now (after 4 seconds)?

What happens, though, if the velocity function is not constant, nor does it form a regular geometric shape (with an easy area formula) when we shade the area underneath it? What’s a student to do?? How can we find the area under that kind of curve?? Example:

VIDEO TUTORIAL INITIATE SLIDE TO VIEW Links to videos--> Definite Integral Limit of Riemann Sum Geometry I CU5L1a LRAM MRAM RRAM Rectangular Approximations left hand riemann calculus right CU5L1b pt II LRAM MRAM RRAM Rectangular Approximations Left right hand riemann calculus CU5L1c pt III LRAM MRAM RRAM Rectangular Approximations hand Riemann left right calculus CU5L3 Rules for Definite Integrals CU5l4 Using Antiderivatives to Find Definite Integrals CU5l5 fundamental theorem of calculus I and II Cu5l6 trapezoidal rule approximation calculus I and II

When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle is called a subinterval. The entire interval is called the partition. Subintervals do not all have to be the same size.

subinterval partition If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation for the area gets better. if P is a partition of the interval

What if: We could split the area under the curve into a lot of thin trapezoids, and each trapezoid would behave like the large one in the previous example. It seems reasonable that the distance will equal the area under the curve.

The area under the curve We can use anti-derivatives to find the area under a curve!

is called the definite integral of over. If we use subintervals of equal length, then the length of a subinterval is: The definite integral is then given by:

Leibnitz introduced a simpler notation for the definite integral: Note that the very small change in x becomes dx.

Integration Symbol lower limit of integration upper limit of integration integrand variable of integration (dummy variable) It is called a dummy variable because the answer does not depend on the variable chosen.

We have the notation for integration, but we still need to learn how to evaluate the integral.

Rules for definite integrals

Using the Properties of the Definite Integral Given:

Riemann Sums There are three types of Riemann Sums Right Riemann: Left Riemann: Midpoint Riemann:

If the velocity is not constant, we might guess that the distance traveled is still equal to the area under the curve. (The units work out.) Example: We could estimate the area under the curve by drawing rectangles touching at their left corners. This is called the Left-hand Rectangular Approximation Method (LRAM). Approximate area:

A particle starts at x=0 and moves along the x- axis with velocity v(t)=t 2 for time t >0. Where is the particle at t=3? (use 6 intervals) LRAM = y x + y x + y x +... = v t + v t + v t +... = 0 2 ( 1 / 2 ) + ( 1 / 2 ) 2 ( 1 / 2 ) + (1) 2 ( 1 / 2 ) + (1½) 2 ( 1 / 2 ) + (2) 2 ( 1 / 2 ) + (2 1 / 2 ) 2 ( 1 / 2 ) = 6.875

We could also use a Right-hand Rectangular Approximation Method (RRAM). Approximate area:

A particle starts at x=0 and moves along the x- axis with velocity v(t)=t 2 for time t >0. Where is the particle at t=3? (use 6 intervals) RRAM = y x + y x + y x +... = v t + v t + v t +... = ( 1 / 2 ) 2 ( 1 / 2 ) + (1) 2 ( 1 / 2 ) + (1½) 2 ( 1 / 2 ) + (2) 2 ( 1 / 2 ) + (2 1 / 2 ) 2 ( 1 / 2 ) + (3) 2 ( 1 / 2 ) =

A particle starts at x=0 and moves along the x- axis with velocity v(t)=t 2 for time t >0. Where is the particle at t=3? (use 6 intervals) MRAM = y x + y x + y x +... = v t + v t + v t +... = ( 1 / 4 ) 2 ( 1 / 2 ) + ( 3 / 4) 2 ( 1 / 2 ) + (1 1 / 4 ) 2 ( 1 / 2 ) + (1 3 / 4 ) 2 ( 1 / 2 ) + (2 1 / 4 ) 2 ( 1 / 2 ) + (2 3 / 4 ) 2 ( 1 / 2 ) = The actual area is 9.

Another approach would be to use rectangles that touch at the midpoint. This is the Midpoint Rectangular Approximation Method (MRAM). Approximate area: In this example there are four subintervals. As the number of subintervals increases, so does the accuracy.

Approximate area: width of subinterval With 8 subintervals: The exact answer for this problem is.

Circumscribed rectangles are all above the curve: Inscribed rectangles are all below the curve:

Area

Area from x=0 to x=1 Example: Find the area under the curve from x = 1 to x = 2. Area from x=0 to x=2 Area under the curve from x = 1 to x = 2.

Example: Find the area under the curve from x = 1 to x = 2. To do the same problem on the TI-89: ENTER 7 2nd

Example: Find the area between the x-axis and the curve from to. On the TI-89: If you use the absolute value function, you don’t need to find the roots. pos. neg. 