CERĪBAS UN PERSPEKTĪVAS

Slides:



Advertisements
Similar presentations
FATS.
Advertisements

The study of materials at the nanoscale.
Research and Innovation Research and Innovation Enabling & Industrial Technologies in Horizon 2020 Enabling & Industrial Technologies in Horizon 2020 Research.
Nutrition and Food Science
Food Processing. The Food Industry b Three Main Sectors  Primary producers  Food Processing  Food Retailing b The food production complex is called.
Nanochemistry PhD Halina Falfushynska. Objectives Recall the structures of carbon Recall the structures of carbon Describe the physical properties of.
3.3 Chemical Compounds in Cells
MyPlate - MyPlate was released in June 2011.
BioMEMS, Bio-Nanotechnology, and Agricultural Research
NANOTECHNOLOGY.
Nanotechnology Understanding and control of matter at dimensions of 1 to 100 nanometers Ultimate aim: design and assemble any structure atom by atom -
Nanotechnology Program Focuses on -> design, fabricating and controlling materials, components and machinery with dimensions on the nanoscale (0.1 – 100.
Jong-Sun Yi 1. Molecular self-assembly Many top down processes create patterns serially and require extreme conditions. (vacuum, temperature, etc.) Bottom-up,
Nanotechnology in Building and Construction Dr. Joannie W. Chin.
NANOTECHNOLOGY Filip Lalin,3.A.
Chemical formulas and Equations Rates of Chemical Reactions.
Nanoparticles and their medical applications
1 INTRODUCTION TO FOOD SCIENCE I 1101 Steven C Seideman Extension Food Processing Specialist Cooperative Extension Service University of Arkansas.
Section 1: Food and Energy
Resources for this unit include: Principles of Food Science (Goodheart-Wilcox) Dr. Robert Shewfelt (Professor of Food Science, The University of Georiga)
Nanotechnology.
Nanotechnology. Introduction: What is it? What are the risks? What are the uses?
Ch. 7 Nutrition for Life Section 1 Carbohydrates, Fats, and Proteins
Generator TM as a new tool for job creation and a prerequisite to the incubation/acceleration processes for commercializing advanced technologies Dr. Zvi.
My Plate and Reading Labels. Chapter 9 Nutrition Review Which is the good cholesterol? How do we get good cholesterol? What does bad cholesterol lead.
State of the World Shrinking Science: Introduction to Nanotechnology Chapter 5.
Introduction to Hygiene Monitoring. Contents 1.The Role of Hygiene Monitoring in Food Safety 2.Cleaning and Sanitation 3.Monitoring Methods 4.An Overview.
IRC in Nanotechnology James Bendall Nanoscience Centre IRC in Nanotechnology University of Cambridge Web:
Judith E. Brown Prof. Albia Dugger Miami-Dade College Understanding Food and Nutrition Labels Unit 4.
AND PRESENT.
By: Ferhat Ince Adeline Mairesse Jonathan Sirault Gäetan Tordeurs Julien Toussaint Sanne Van Beek Daria Van Eechaute Project leader: Evelyne Wirix Project.
Nanotechnology in food
Chapter 5 lesson 5 Being a smart consumer.
1 Lesson 4 Nutrition Labels and Food Safety. 2 Nutrition Label Basics The name of the food product The amount of the food in the package The name and.
 Chap 3  J Pistack MS/ED. FATS  Lipids – the true name for fats of all kinds  Lipids include true fats, oils, and the related lipoids and sterols.
Yeast Bread. Leavening Agent  Yeast: is the leavening agent.
The Food Supply Factors that affect the food supply.
Founded in 2008 “to promote and coordinate multidisciplinary research and education in the molecular and nanosciences” INSTITUTE-WIDE THEMES Molecular.
Nanotechnology Industry Nanotechnology Nanotechnology is the group of emerging technologies in which matter is measured on the nanometer scale - down.
Nanomaterials a materials science-based approach to nanotechnology.
The EU framework programme for research and innovation.
Food Science and Industry
ERT 455 MANUFACTURING & PRODUCTION OF BIOLOGICAL PRODUCT 1.
1 1 nanometer (nm) = 10 hydrogen atoms side-by-side Meaning of “nano”: One billionth (10x-9) Nanometer (nm) = one billionth of a.
Nano technology and GM foods
 Also called fat – are a family of chemical compounds that are a main part of every living cell.
May 11, 2009 Warm Up: What are food additives? Today Food Additives Notes Begin Food Additives Assignment.
The Incredible Edible Egg! TM. What’s Inside? Inside the egg: What is it made of? 1. The Shell the shell is the hard outer covering of egg made mostly.
The future revolution By P.Ajay & M.SANTOSH. contents  What is nano-technology  Origin  Production  Tools of nano-technology  Applications  Disadvantages.
Nutrition Labels and Food Safety. Nutrition Label Basics Food labels provide information about the ingredients and nutritional value of foods –Name of.
1. 2 Basic Food System Pre-foods are manufactured Products delivered to point of use Food processor assembles food Many recipes (programs) Healthy eating.
Food preparation. Definition of food preparation Is the Processes followed to prepare foodstuff for eating, with maintaining the nutritional, sensory.
Yena Kyung Food science & Technology Lab of Bioresources and Food chemistry 7 Nanotechnologies for Improving Food Quality, Safety, And Security.
MyPlate - MyPlate was released in June Recommendations are for 2 years of age and older.
Cagri Ozge Topal OSU ECEN 5060 Nanotechnology
Introduction to Cells CHEMICAL COMPOUNDS IN CELLS.
NANOTECHNOLOGY IN FOOD SCIENCE
Nanotechnology Group Group 2.
Ruben Subira - Regional Market Manager
Cagri Ozge Topal OSU ECEN 5060 Nanotechnology
UNIT 1 NOTES CHAPTERS 1, 2, 5.
What is food chemistry? The study of the chemicals inside common foods and how they react.
NANOTECHNOLOGY IN FOOD AND AGRICULTURE
JIŘÍ KŮS Czech Nanotechnology Industries Association
Nutrition Labels and food safety
4-year PhD in Nanoscience
UNIT 1 NOTES CHAPTERS 1, 2, 5.
UNIT 1 NOTES CHAPTERS 1, 2, 5.
© 2016 Global Market Insights, Inc. USA. All Rights Reserved Fuel Cell Market size worth $25.5bn by 2024 Low Power Wide Area Network.
FDE 101-Basic Concepts in Food Engineering
Presentation transcript:

CERĪBAS UN PERSPEKTĪVAS NANOTEHNOLOĢIJA: CERĪBAS UN PERSPEKTĪVAS Indriķis Muižnieks, 2014. g. 12. decembris

Tēmas: Kas ir nanotehnoloģija ? Nanotehnoloģijas pamatlicēji un vēsture Nanotehnoloģijas virzieni Nanotehnoloģisko sistēmu komponenti Biomehanismi no šūnas komponentiem Perspektīvie pielietojumi www.zyvex.com/nano/ www.nanotech-now.com/ www.nbtc.cornell.edu/ www.jnanobiotechnology.com/

Kas ir nanotehnoloģija ? Nanotehnoloģija ir vielu un priekšmetu veidošana no atsevišķiem atomiem vai molekulām ar programmētu, dažus nanometrus lielu mehanismu/robotu (biobotu) palīdzību. Dzīvie organismi - perfektas nanosistēmas. Nanotechnology is an umbrella term that covers the design, characterization, production and application of structures, devices and systems by controlling shape and size at nanometre scale.

Key enebling technologies (KET): Eiropā definētās nākotnes tehnoloģijas, ar kuru attīstīsbu saista zinātnes un ekonomikas izaugsmes cerības: Viedie materiāli – Advanced Materials Nanotehnoloģija – Nanotechnology Mikro un nanoelektronika – Micro and Nanoelectronics Rūpnieciskā biotehnoloģija – Industrial Biotechnology Fotonika - Photonics

Kas ir nanotehnoloģija ? Atomu izkārtojums nosaka vielas īpašības. Grafīts un dimants

If we rearrange the atoms in sand (and add a few other trace elements) we can make computer chips. If we rearrange the atoms in dirt, water and air we can make potatoes.

Kas ir nanotehnoloģija ? Sešdesmitie: Cietvielu fizika (Mikroelektronika) Informācijas un komunikāciju tehnoloģija Astoņdesmitie: Molekulārā ģenētika Jaunā biotehnoloģija 21. gadsimts: Mikroeletronika + molekulārā bioloģija Nanotehnoloģija

Kas ir nanotehnoloģija ? Paredzamā atdeve lielāka nekā jebkuram citam līdzšinējam cilvēces sasniegumam. Nanotehnoloģija labos industriālās revolūcijas nodarīto ļaunumu.

Kas ir nanotehnoloģija ? patēriņa priekšmetu veidošana no atomiem - pašsavācēji roboti neizmērojami ātrāka datu apstrāde slimību, novecošanas, nāves kontrole vides piesārņojuma izbeigšana un esošā piesārņojuma attīrīšana pārtikas molekulārā sintēze apdzīvojamas vides veidošana ārpus Zemes un vēl daudz kas, ja ar šo nepietiek.

Nanotehnoloģijas vēsture Norberts Vīners (1894. - 1964.) kibernētikas principi Ričards Feinmans (1918. - 1988.) - apakšā vēl ir daudz vietas (1959.)

Nanotehnoloģijas vēsture Ēriks Drekslers, 1992. g. pirmais doktora grāds nanotehnoloģijā MIT, grāmata

Nanotehnoloģijas vēsture 1974. - pirmo reizi lietots termins "nanotehnoloģija" 1981. - pirmais raksts zinātniskajā žurnālā par molekulāro nanotehnoloģiju 1984. - atomu spēka mikroskops 1988. - atomu pārvietošana ar ASM palīdzību 1990. - oglekļa fulerēni 1997. - nanodimantu iegūšana no oglekļa ar jonizējošā starojuma palīdzību 1998. - DNS elektrovadītspējas atklāšana 1998. - oglekļa nanocarules 2000. - ASV uzsāk nanotehnoloģijas pētniecības programmu (NNI) 2006. – Nanotehnoloģijas kā ES FP7 prioritāte

Nanotehnoloģijas vēsture Kad sāksies nanotehnoloģijas ēra ? Līdz ar pirmā universālā asemblera (atomu savācēja) uzbūvēšanu. Prognoze: 10 gadi The global market for nanotechnology has been estimated to amount to $147bn in 2007 and to grow to in most optimistic assessments to $1 trillion and possibly to over $3 trillion by 2015. The United States (40%) constitutes the biggest market for nanotechnology, followed by Europe (31%). Both regions are expected to amount to 35% of the worldwide market in 2015. Like today, the majority of global sales will be attributed to manufacturing and materials (over 55%), followed by electronics and IT (over 23%). Current situation of key enabling technologies in Europe. {COM(2009) 512}

Pasaules lielais nanotirgus GLOBAL NANOTECHNOLOGY MARKET, 2011-2017 NANOMEDICAL GLOBAL SALES BY THERAPEUTIC AREA www.agcs.allianz.com, www.bccresearch.com, dolcera.com

An estimated two million skilled nanotechnology workers will be needed worldwide by the year 2015 – one million of them in the U.S. Graduates are receiving salary offers up to $55,000 per year with a two-year degree Graduates with a baccalaureate degree can expect salary offers up to $65,000 per year Students who choose to continue their education can expect salary offers of $100,000

Nanotehnoloģijas virzieni "Slapjais" - bioloģisku sistēmu atdarināšana. Dzīvie organismi - perfektas nanosistēmas "Sausais" - fizikālās ķīmijas un fizikas metožu pielietojums oglekļa, metālu, pusvadītāju elementu nanocauruļu un sfēru ražošanai. Iegūstamie materiāli parasti ir pārāk aktīvi vai elektrovadītspējīgi, lai funkcionētu fizioloģiskos apstākļos. Noderīgi elektronisku, magnētisku, optisku iekārtu radīšanai. Mērķis - radīt “sausās" struktūras, kuras spētu pašsavākties tikpat labi, kā slapjās. Nanotehnoloģisko sistēmu datormodelēšana - "sauso" un "slapjo" struktūru formu un funkciju paredzēšana

Nanosistēmas komponenti: pozicionēšanas sistēma - skelets; motori un sviras – funkcionālie elementi; sensori – maņu orgāni; programmēšanas sistēma; makroasemblers - robot (biobot) roka

MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA Pozicionēšanas sistēma MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA Fulerēni - oglekļa atomu sfēras 1996. gada Nobela Prēmija fizikā un ķīmijā Professor Robert F. Curl, Jr., Rice University, Houston, USA, Professor Sir Harold W. Kroto, University of Sussex, Brighton, U.K., Professor Richard E. Smalley, Rice University, Houston, USA.

MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA Pozicionēšanas sistēma MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA

DNS kā celtniecības materiāls Pozicionēšanas sistēma DNS kā celtniecības materiāls Chen JH, Seeman NC Synthesis from DNA of a molecule with the connectivity of a cube. Nature 1991 Apr 18;350(6319):631-3

nomar.usc.edu/pubs/ Building Blocks for DNA Self-Assembly Yuriy Brun, Manoj Gopalkrishnan, Dustin Reishus, Bilal Shaw, Nickolas Chelyapov, and Leonard Adleman nomar.usc.edu/pubs/

DNS kā celtniecības materiāls The enabled state of DNA nanotechnology Veikko Linko and Hendrik Dietz, 2013

(a) DNA nanotubes for NMR-based structural biology (a) DNA nanotubes for NMR-based structural biology. (b) DNA frame for visualizing conformational switching of a G-quadruplex with high-speed AFM. (c) Two-dimensional DNA crystals for organizing and imaging single proteins with cryo-EM. (d) DNA origami gatekeeper on a solidstate nanopore (e) Motor protein ensemble transports a programmable DNA origami cargo (f) Chiral plasmonic nanostructures consisting of a DNA helix bundle and gold nanoparticles. (g) DNA origami-based fluorescent barcodes as in situ imaging probes for fluorescence microscopy. (h) DNA nanorobot, which can encapsulate molecular payloads and display them when triggered by specific cell surface proteins. (i) DNA origami nanochannel that can be anchored to a lipid membrane via cholesterol linkers The enabled state of DNA nanotechnology Veikko Linko and Hendrik Dietz, 2013

MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA Pozicionēšanas sistēma MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA DNS STATISKĀ IZLIEKUMA MODELĒŠANA Estimation of wedge components in curved DNA L.E.Ulanovsky, E.N.Trifonov Nature, 326, 720, 1987

MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA Pozicionēšanas sistēma MOLEKULĀRO MIKROKAPSULU KONSTRUĒŠANA

Funkcionālie elementi Motors

Funkcionālie elementi Motors R. Schmitt, Biophys.J. 85, 843-852. 2003

Funkcionālie elementi Motors Ricky K. Soong et al., “Powering an Inorganic Nanodevice with a Biomolecular Motor,” Science 290 (2000), 1555-58.

Funkcionālie elementi Svira

DNS kā signāla pārraides sistēma – elektrības vads - neirons Sensori – maņu orgāni DNS kā signāla pārraides sistēma – elektrības vads - neirons

Funkcionālie elementi Svira

DNS BIOSENSORU KONSTRUĒŠANA Pielietojuma perspektīvas - jau tūlīt DNS BIOSENSORU KONSTRUĒŠANA

Pielietojuma perspektīvas - jau tūlīt FRET – fluorescences rezonanses enerģijas pārnese

DNS BIOSENSORU KONSTRUĒŠANA Pielietojuma perspektīvas - jau tūlīt DNS BIOSENSORU KONSTRUĒŠANA

DNS BIOSENSORU KONSTRUĒŠANA Pielietojuma perspektīvas - jau tūlīt DNS BIOSENSORU KONSTRUĒŠANA

Universālais asamblers SINTĒTISKA ROKA - ASM MIKROSKOPS

Universālais asamblers JAUNA DARBA METODE - ATOMU SPĒKA MIKROSKOPIJA Heinrihs Rorers [Rohrer] (1933, NP - 1986.) Gerds Binnigs [Binnig] (1947, NP - 1986.) Skenējošā tunelējošā (atomu spēka) mikroskopa izgudrošana

Universālais asamblers JAUNA DARBA METODE - ATOMU SPĒKA MIKROSKOPIJA Mikroskopa darbības princips http://physics.aalto.fi/groups/comp/sin/research/ http://commons.wikimedia.org/wiki/File:AFMsetup.jpg

Universālais asamblers JAUNA DARBA METODE - ATOMU SPĒKA MIKROSKOPIJA BioScope AFM Tapping electrode http://Veeco Instruments GmbH

Universālais asamblers JAUNA DARBA METODE - ATOMU SPĒKA MIKROSKOPIJA LU ĶFI

Universālais asamblers JAUNA DARBA METODE - ATOMU SPĒKA MIKROSKOPIJA

Sensori – maņu orgāni DNS kā signāla pārraides sistēma

DNS / proteīnu nanosensori un virsmas plazmonu rezonanse (SPR) Bonanni, M. del Valle / Analytica Chimica Acta 678 (2010) 7–17 Merkocø i / Biosensors and Bioelectronics 26 (2010) 1164–1177

DNS kā signāla pārraides sistēma Sensori – maņu orgāni DNS kā signāla pārraides sistēma 5’-GCGC; 5’-GGCC DNS GALU STRUKTŪRAS 37oC 4oC

DNS kā signāla pārraides sistēma Sensori – maņu orgāni DNS kā signāla pārraides sistēma ss pārkares galu sekvence modulē DNS kustīgumu elektriskajā laukā PAAG elektroforēzē

DNS kā signāla pārraides sistēma Sensori – maņu orgāni DNS kā signāla pārraides sistēma Trīspavedienu DNS veidošanās (Hogstena bāzu pāri), kas var veidot ss pārkares galu struktūras

G-(G::C) mijiedarbība C-(G::C) mijiiedarbība Sensori – maņu orgāni DNS kā signāla pārraides sistēma G-(G::C) mijiedarbība C-(G::C) mijiiedarbība

DNS elektrovadītspējas mērījumi ar atomu spēka mikroskopu

Maģistra darbs: 5’GCGC un 5’CGCG pārkares galus saturošu DNS oligonukleotīdu elektroforētiskās īpašības un vizualizācija atomspēka mikroskopā Darba autors: Dace Bērtule Oligonukleotīdi ar guanīna cilpu un 5’GCGC pārkari 4G/GG Oligonukleotīdi ar adenīna cilpu un 5’GCGC pārkari 4A/GG

NANOPĀRTIKA NANOFOOD Food is considered a nanofood when nanoparticles are used during cultivation, production, processing, or packing of the food. It does not mean atomically modified food or food produced by nanomachines. http://www.nutritioninformation.us/nutrition.htm

KĀPĒC NANOMĒROGS? It allows manufacturers to combine ingredients that weren’t possible before as well as adding ingredients to end-use products that you otherwise couldn’t. An example of this is white bread with Omega-3. http://starbakers.in/products-page/bread/

NANOKAPSULAS Nanoparticles are being developed that will deliver vitamins or other nutrients in food and beverages without affecting the taste or appearance. http://southwerk.wordpress.com/2010/11/11/gold-nanoparticles/

NANOKAPSULAS Kraft is developing a clear tasteless drink that contains hundreds of flavors in latent nanocapsules

NANOKAPSULAS A domestic microwave could be used to trigger release of color, flavor, concentration, and texture of the individual’s choice. Smart foods could also sense when an individual is allergic to a food’s ingredients http://www.vivax.com/default.aspx?tabid=804&newsType=ArticleView&articleId=5138

NANOKAPSULAS Nanotubes and nanoparticles act as gelation agents Nanocapsule infusion of plant based steroids to replace a meat’s cholesterol http://bbq.about.com/od/steaks/ss/aa110108a.htm

NANOKONSERVANTI Nano-bubbles of ozone with micro-bubbles of an ozone/oxygen mix is used to clean seafood.

NANODEVĒJI Biacore’s micro fluidic chip technology is being used to ensure consistent vitamin content in fortified foods, testing for antibiotics in honey and screening for veterinary drug residue in livestock and poultry.

NANOVIRSMAS OilFresh 1000 is a thin ceramic plate used in deep fat fryers in restaurants to slow the breakdown of the oil so restaurants can fry food faster This helps restaurants use less oil and save money. The food will not absorb as much oil either

NANOIEPAKOJUMS Nanocomposites are used in food packaging to improve the barrier of plastic films and bottles which results in food staying fresh longer

NANOIEPAKOJUMS Clay nanocomposites are being used to provide an impermeable barrier to gasses in lightweight bottles, cartons, and packaging films http://accelrys.com/resource-center/case-studies/archive/studies/nanocomposites2.html

NANOIEPAKOJUMS Storage bins are being produced with silver nanoparticles embedded in the plastic. The silver nanoparticles kill bacteria from any material that was previously stored in the bins, minimizing health risks from harmful bacteria http://www.trippauctionservices.com/listings/details/index.cfm?itemnum=775198149

NANOIEPAKOJUMS Smart packaging is being developed that will be capable of detecting food spoilage and releasing nano-anti-microbes to extend food shelf life. This will allow supermarkets to keep food longer. http://www.chipsbooks.com/smartpac.htm

NANOIEPAKOJUMS Smart packaging could release a dose of additional nutrients to those which it identifies as having special dietary needs, for example calcium molecules to people suffering from osteoporosis http://altmed.creighton.edu/hypertension/Nutritional%20Supplementation.htm

NANOIEPAKOJUMS Antibodies attach to fluorescent nanoparticles to detect chemicals or foodborne pathogens Biodegradable nanosensors are used for temperature, moisture, and time monitoring http://science.csustan.edu/confocal/Images/Chuck/fitc.htm

Lielākie pārtikas ražotāji, kas izmanto nanotehnoloģijas H.J. Heinz Nestle Hershey Unilever Campina General Mills Friesland Food Grolsch Kraft Foods Cargill Pepsi-Cola Company ConAgra Foods

Pielietojuma perspektīvas - ar laiku Dr. C.Mavroidis, Rutgers, State University of New Jersy //bionano.rutgers.edu

Pielietojuma perspektīvas - ar laiku

Pielietojuma perspektīvas - ar laiku Dr. C.Mavroidis, Rutgers, State University of New Jersy //bionano.rutgers.edu

SHORT DESCRIPTION OF THE EVENT The EuroNanoForum is a meeting point for industry, science and policy. Organised biannually since 2003, it has grown into the most significant European networking conference focusing on innovations in the various nanotechnology fields and associated industrial sectors. 10-12 JUNE 2015, RIGA, LATVIA EuroNanoForum 2015 is organised in Riga as part of the Latvian presidency of the Council of the European Union.

PRIECĪGUS ZIEMASSVĒTKUS ! NANOZIEMSVĒTKI PRIECĪGUS ZIEMASSVĒTKUS !