Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.

Slides:



Advertisements
Similar presentations
Bandgap Engineering of UV-Luminescent Nanomaterials Leah Bergman, University of Idaho, DMR CAREER One of the main advantages of a nanomaterial.
Advertisements

Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
Semiconductor Devices 21
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Radiation damage in SiO2/SiC interfaces
William Cunningham Properties of SiC radiation detectors W. Cunningham a, J. Melone a, V.Kazukauskas b,c P. Roy a, F. Doherty a, M. Glaser d, J.Vaitkus.
1 Design, Fabrication, and Characterization of GaN High Power Rectifiers Kwang H. Baik Materials Science and Engineering, Univ. of Florida, Gainesville,
Atomistic Simulation Group
Process Optimization and Development for ZnO Optoelectronics and Photodiodes Jon Wright Dept. of Materials Science and Engineering, Univ. of Florida, Gainesville,
Cu(I) based delafossites as candidate materials for p-type transparent conducting oxides 05/28/10 Roy Rotstein.
GaN based Heterojunction Bipolar Transistors
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
ISDRS 2003 Xiaohu Zhang, N.Goldsman, J.B.Bernstein, J.M.McGarrity and S. Powell Dept. of Electrical and Computer Engineering University of Maryland, College.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Basic Electronics Dr. Imtiaz Hussain Assistant Professor Mehran University of Engineering & Technology Jamshoro
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li.
12/03/ ZnO (Zinc oxide) by Alexander Glavtchev.
Semiconductor Devices 22
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Development of Thin Film and Nanorod ZnO-Based LEDs and Sensors
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 6 Lecture 6: Integrated Circuit Resistors Prof. Niknejad.
Wide Bandgap Semiconductor Nanowires for Sensing S.J. Pearton 1, B.S. Kang 1, B.P.Gila 1, D.P. Norton 1, L.C.Tien 1, H.T.Wang 2, F. Ren 2, Chih- Yang Chang.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Improvement in light-output efficiency of Near-Ultraviolet InGaN–GaN LEDs Fabricated on Stripe Patterned Sapphire Substrate 指導教授 : 管鴻 教授 報告學生 : 林耀祥 日 期:
2003/5/12 國立彰化師範大學 - 屠嫚琳 1 The Blue Laser Diode 屠嫚琳 Man-Lin Tu.
The Sixth International Workshop on Junction Technology (IWJT), May 15-16, 2006, Shanghai, China. Formation and characterization of aluminum-oxide by stack-
November 2004 Beta Iron Disilicide (  -FeSi 2 ) As an Environmentally Friendly Semiconductor for Space Use 1.Kankyo Semiconductors Co., Ltd. 2.Nippon.
ELECT /01/03 SiC basic properties The basic properties of SiC makes it a material of choice for fabricating devices operating at high power and high.
University of Florida NHA Hydrogen Conference, March 21, 2007 Wireless Hydrogen Sensor Networks Using GaN-based Devices Travis Anderson 1, Hung-Ta Wang.
Implantation of N-O in Diamond
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
Technology Thin films ZnO:Al were prepared by RF diode sputtering from ZnO + 2wt % Al 2 O 3 target. It is a plasma assisted deposition method which involves.
SILICON DETECTORS PART I Characteristics on semiconductors.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between and 3x10 20 cm -3 by.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Heterostructures & Optoelectronic Devices
Electronics 1 Lecture 3 Moving Charge Carriers
Luminescence basics Types of luminescence
Compositional dependence of damage buildup in Ar-ion bombarded AlGaN K. Pągowska 1, R. Ratajczak 1, A. Stonert 1, L. Nowicki 1 and A. Turos 1,2 1 Soltan.
ZnO LEDs for Solid State Lighting Budget Period Review Sept 14, 2006 ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes Prime Recipient:
Erie H. Moralesa), M. Batzillb) and U. Diebolda)
Advisor: Prof. Yen-Kuang Kuo
National Science Foundation Sb-doped SnO 2 as a transparent contact on InGaN/GaN LEDs James S. Speck, University of California-Santa Barbara, DMR
Northwestern University Selected ZnO Properties - Molecular mass Specific gravity at room temp g/cm3 - Point group 6mm (Wurtzite)
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
EE105 - Spring 2007 Microelectronic Devices and Circuits
1 Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育.
MOS Device Physics and Designs Chap. 3 Instructor: Pei-Wen Li Dept. of E. E. NCU 1 Chap 3. P-N junction  P-N junction Formation  Step PN Junction  Fermi.
Growth and optical properties of II-VI self-assembled quantum dots
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
Gallium Nitride Research & Development Rakesh Sohal
National Cheng Kung University Institute of microelectronics OEIC Lab. Jun P. 1 ZnO-based thin film double heterostructured- ultraviolet light-emitting.
Diodes II: Fabrication by Doping MS&E 362: Materials Lab III Nov. 8.
Luminescent Properties of ZnO and ZnO:Ce Thin-Films Manuel García-Méndez
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
II-VI Semiconductor Materials, Devices, and Applications
Advanced Science and Technology Letters Vol.29 (IRTT 2013), pp Fabrication and Characteristics analysis.
Review of Semiconductor Devices
Y.Y CHEN.
Luminescent Periodic Microstructures for Medical Applications
Total Dose Response of HfSiON MOS Capacitors
Basic Semiconductor Physics
Carbon Nanotube Diode Design
Introduction to Materials Science and Engineering
Effect of Cryogenic Temperature Deposition of Various Metal Contacts to Bulk, Single-Crystal n-type ZnO J. Wright1, L. Stafford1, B.P. Gila1, D.P. Norton1,
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Presentation transcript:

Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan Jang 1, Hyun-Sik Kim 2, Yuanjie Li 2, David Norton 2, and Stephen Pearton 2 1. Department of Chemical Engineering, University of Florida, Gainesville, FL Department of Materials Science and Engineering, University of Florida, Gainesville, FL Pennsylvania State University, University Park, PA Session DD: P-Type Doping and Electroluminescence in ZnO June 30, 2006

Page 2 Outline Background review Simulation Device fabrication Experimental results Conclusions Acknowledgements

Page 3 Advantages of ZnO as Light Emitting Material Unique properties of ZnO Wurtzite (Hexagonal) structure II-VI compound semiconductor Zn and O at 4f-site Direct wide bandgap = 3.37eV Transparent conducting oxide Binding energy of exciton (300K)= 60 meV c a Oxygen Zinc ZnO light emitting diode Higher exciton binding energy Availability of high quality bulk substrate Easier wet etching Simpler growth technology (low cost)

Page 4 p-i-n LED Using Temperature Modulated Epitaxy [A. Tsukazaki et al.] 1. Nature Material, 4, 42 (2005). 2. Jpn. J. Appl. Phys., Part 2 21, L643 (2005).

Page 5 p-n LED Using MOCVD [W. Z. Xu et al.] Appl. Phys. Lett., 88, (2006).

Page 6 p-n LED Using Sputtering [Jae-Hong Lim et al.] Advance Material, 2006.

Page 7 MIS diode Using Ion implantation [Ya. I. Alivov et al.] Solid State Electronics, 48, 2343 (2004). EL CL

Page 8 ZnO LED by Ion Implantation Opportunities: Well developed technology High yield rate, low cost technology p-type ZnO film is achievable using ion implantation Ion implantation to bulk ZnO? Challenges: How to activate implanted dopant in damaged ZnO???

Page 9 Depth Profile Modeling Simulator: Profile Code (

Page 10 Collision Event Modeling Simulator: SRIM-2003 (Free! -3 ) Zn vacancies 6.0×10 21 O vacancies 3.6 × total vacancies 9.6 × replacement5.2 × 10 20

Page 11 Device Fabrication ZnO substrate N + implanted ZnO (300nm) Au (80nm) Ni (20nm) Au (200nm) Ti (20nm) Cermet: (0001) undoped, I grade n 0 =10 17 cm -3 ; μ e =190 cm 2 /V·s Proc. of SPIE, Vol.5941, 59410D-1(2005) Implantation dose 1: 10keV, 2×10 13 cm -2 dose 2: 30keV, 5×10 13 cm -2 dose 3: 65keV, 9×10 13 cm -2 dose 4: 140keV, 2.4×10 14 cm -2 Thermal activation (RTA, furnace; T=600~1000°C) Backside metal: Ti/Au(20/200nm) Front-side metal: Ni/Au(20/80nm)

Page 12 I-V of Metal Contacts

Page 13 Diode I-V Characteristics Leakage current~ V Ideality factor~11

Page 14 Light Intensity Performance Devices 600C RTA 800C RTA 950C RTA P at 100mA (Lumen) 3.57× ×

Page 15 Electroluminescence at Room Temp.

Page 16 Electroluminescence at 120K

Page 17 Conclusions MIS diode was achieved by N +_ implanted ZnO bulk. Yellow EL was obtained from N + -implanted ZnO at room T. Band-edge EL was obtained at 120K. Future work: 1. p-type conductivity. 2. pn LED.

Page 18 Acknowledgements This work at UF is supported by: DOE Grant No. DE-FC26-04NT DOE Contract No. DE-AC05-00OR USAFOSR under Grant No. F Thank you very much!

Page 19 Properties of GaN and ZnO PropertyGaNZnO Crystal structureWurtziteZinc BlendeWurtzite Lattice constant (nm) a 0 : c 0 : a 0 /c 0 : Density (g/cm 3 ) Thermal conductivity (W cm -1 °C -1 )>2.10.6, Linear expansion coefficient (°C -1 ) a 0 : c 0 : 5.59× × × ×10 -6 Energy bandgap (eV)3.51, direct3.3, direct3.4, direct Exciton binding energy (meV)28-60 Electron effective mass Electron Hall mobility at 300K (cm 2 ⋅ V -1 ⋅ s -1 ) 0.2 ~1000 ~ Hole effective mass Hole Hall mobility 0.8 ≤ 200 ≤ ~50 Electron saturation velocity(10 7 cm ⋅ s -1 )