Status of the Sudbury Neutrino Observatory (SNO) Alan Poon for the SNO Collaboration Institute for Nuclear and Particle Astrophysics Lawrence Berkeley.

Slides:



Advertisements
Similar presentations
Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
Advertisements

Neutrino oscillations/mixing
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
11-September-2005 C2CR2005, Prague 1 Super-Kamiokande Atmospheric Neutrino Results Kimihiro Okumura ICRR Univ. of Tokyo ( 11-September-2005.
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
From Nuclei to Neutrinos The Naming of the Denys Wilkinson Building 21 June 2002 Nick Jelley.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Queen’s University, Kingston, ON, Canada
2. Present Understandings
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Results and Prospects for SNO
Super-Kamiokande – Neutrinos from MeV to TeV Mark Vagins University of California, Irvine EPS/HEP Lisbon July 22, 2005.
July 19, 2003 HEP03, Aachen P. Shanahan MINOS Collaboration 1 STATUS of the MINOS Experiment Argonne Athens Brookhaven Caltech Cambridge Campinas Dubna.
1 Super-Kamiokande atmospheric neutrinos Results from SK-I atmospheric neutrino analysis including treatment of systematic errors Sensitivity study based.
SNO+ Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Welcome to SNOLAB And to the Neutrino Geoscience Conference Art McDonald Queen’s University, Kingston Director, SNO Institute (+)
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
Neutrino Physics from SNO Aksel Hallin University of Alberta Erice, 2009.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
Search for Sterile Neutrino Oscillations with MiniBooNE
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
J. Dunmore, University of Oxford NDM03, 10 June 2003 Event Isotropy in the Salt Phase of SNO Jessica Dunmore University of Oxford NDM03, Nara - 10 June.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
N eutrino O scillation W orkshop Conca Specchiulla, September 11 th 2006 Michael Smy UC Irvine Low Energy Challenges in SK-III.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Solar Neutrino Results from SNO
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
SNO + SNO+ Steve Biller, Oxford University.  total SSM June 2001 (indirect) April 2002 (direct) (unconstrained CC spectrum) Sept 2003 (salt - unconstrained)
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Results and Prospects with the Sudbury Neutrino Observatory Neutrinos and SNO Phase III Results Low Threshold Analysis Future (maybe) Josh Klein University.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
First Results from Phase II of the Sudbury Neutrino Observatory Joshua R. Klein University of Texas at Austin  Solar Neutrinos  Review of Phase I Solar.
The Double Chooz reactor neutrino experiment
Simulation for DayaBay Detectors
Solar Neutrino Problem
“Solar” Neutrino Oscillations (Dm2, q12)
Sudbury Neutrino Observatory
Some Nuclear Physics with Solar Neutrinos
Presentation transcript:

Status of the Sudbury Neutrino Observatory (SNO) Alan Poon for the SNO Collaboration Institute for Nuclear and Particle Astrophysics Lawrence Berkeley National Laboratory, Berkeley, USA

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Outline What we did…(Phase I: Pure D 2 O target) What we are doing…(Phase II: D 2 O + NaCl) What we will be doing…(Phase III: Neutral Current Detectors)

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Sudbury Neutrino Observatory 1700 tonnes of inner shielding H 2 O 12.01m dia. acrylic vessel 17.8m dia. PMT Support Structure cm dia. PMTs 56% coverage 5300 tonnes of outer shielding H 2 O Urylon liner 1006 tonnes D 2 O Nucl. Inst. Meth. A449, 127 (2000) 2 km to surface

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Detecting at SNO NC xx    npd ES --    e e xx CC - epd  e p Low Statistics  ( e )  6  (  )  6  (  ) Strong directionality: Measurement of e energy spectrum Weak directionality: Measure total 8 B flux from the sun  e     

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Phase I: Extracting the Solar Flux PDFs: kinetic energy T, event location R 3, and solar angle correlation cos  sun Max. Likelihood Fit OR +  CC NCES

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) See : Phys.Rev.Lett. 89 (2002) Phys.Rev.Lett. 89 (2002) Solar Model predictions are verified: [in 10 6 cm -2 s -1 ] Phase I: Missing Solar ’s Found 8 B  shape constrained fit: No 8 B  shape constraint: Null hypothesis of no flavor transformation rejected at 5.3 

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Correlation in Signal Extraction (Phase I) CCESNC CC ES NC Correlation Matrix Strong statistical anti-correlation between NC and CC in the signal extraction

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Phase II (D 2 O + 2 tons NaCl) VariablesCC Stat. Error NC Stat. Error ES Stat. Error * E,R,  sun 3.4 %8.6%10% * R,  sun 9.5%24%11% E,R,  sun 4.2%6.3%10% E,R,  sun, Iso. 3.3%4.6%10% R,  sun,Iso. 3.8%5.3%10% * PRL, 89, No. 1, , (2002) Simulation Added 2 tons of salt in June 2001 to enhance NC detection efficiency and to improve the separability of NC and CC Cherenkov signals CC: Single electron (Cherenkov signal less isotropic) NC: Multiple  ’s following n capture on 35 Cl (Cherenkov signal more isotropic)

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Phase II: Blind Analysis ~ 280 live days Triple blind analysis to ensure independence from Phase I – CC, ES: data set pre-scaled by an “unknown” factor of 80±10% – NC: Leak an “unknown” number of spallation neutrons in the data NC interaction cross section in the Monte Carlo is spoiled by an “unknown” factor

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Phase II: Analysis & Challenges I. Energy Scale Drift Absolute Energy Scale Uncertainty ~1.1% (preliminary) [c.f. 1.2% in Phase I] II. Light Isotropy Mott scattering missing in EGS4, now added in the SNO Monte Carlo

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Phase II: Analysis & Challenges III. Neutron EfficiencyIV. 24 Na 23 Na (in the plumbing) activated by neutrons from the rock wall 24 Na  decays and emits 2  (1.37, 2.75 MeV) calibrated by controlled activation √(x 2 +y 2 ) [cm] Z [cm]

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Decoupling CC and NC in Phase III CC: Cherenkov Signal  PMT Array NC: n+ 3 He  Neutral Current Detector Array

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) SNO Summary Final full detector calibration of Phase II completed Analysis of the blind data is complete…box to be opened upon completion of internal review Other analyses in progress: solar anti-neutrino, day-night flux, proton decay, atmospheric neutrinos, muon spallation…Stay tuned! Phase II (D 2 O+NaCl) Phase III (Neutral Current Detector) All 3 He counters have been constructed and stored in the underground lab All counters are being characterized Integration of electronics and DAQ in progress Deployment in Fall 2003

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) The SNO Collaboration G.Milton, B.Sur Atomic Energy of Canada Ltd., Chalk River Laboratories S.Gil, J.Heise, R.J.Komar, T.Kutter, C.W.Nally, H.S.Ng, Y.I.Tserkovnyak, C.E.Waltham University of British Columbia J.Boger, R.L Hahn, J.K.Rowley, M.Yeh Brookhaven National Laboratory R.C.Allen, G.Bühler, H.H.Chen * University of California, Irvine I.Blevis, F.Dalnoki-Veress, D.R.Grant, C.K.Hargrove, I.Levine, K.McFarlane, C.Mifflin, V.M.Novikov, M.O'Neill, M.Shatkay, D.Sinclair, N.Starinsky Carleton University T.C.Anderson, P.Jagam, J.Law, I.T.Lawson, R.W.Ollerhead, J.J.Simpson, N.Tagg, J.-X.Wang University of Guelph J.Bigu, J.H.M.Cowan, J.Farine, E.D.Hallman, R.U.Haq, J.Hewett, J.G.Hykawy, G.Jonkmans, S.Luoma, A.Roberge, E.Saettler, M.H.Schwendener, H.Seifert, R.Tafirout, C.J.Virtue Laurentian University Y.D.Chan, X.Chen, M.C.P.Isaac, K.T.Lesko, A.D.Marino, E.B.Norman, C.E.Okada, A.W.P.Poon, S.S.E Rosendahl, A.Schülke, A.R.Smith, R.G.Stokstad Lawrence Berkeley National Laboratory M.G.Boulay, T.J.Bowles, S.J.Brice, M.R.Dragowsky, M.M.Fowler, A.S.Hamer, A.Hime, G.G.Miller, R.G.Van de Water, J.B.Wilhelmy, J.M.Wouters Los Alamos National Laboratory J.D.Anglin, M.Bercovitch, W.F.Davidson, R.S.Storey * National Research Council of Canada J.C.Barton, S.Biller, R.A.Black, R.J.Boardman, M.G.Bowler, J.Cameron, B.T.Cleveland, X.Dai, G.Doucas, J.A.Dunmore, A.P.Ferarris, H.Fergani, K.Frame, N.Gagnon, H.Heron, N.A.Jelley, A.B.Knox, M.Lay, W.Locke, J.Lyon, S.Majerus, G.McGregor, M.Moorhead, M.Omori, C.J.Sims, N.W.Tanner, R.K.Taplin, M.Thorman, P.M.Thornewell, P.T.Trent, N.West, J.R.Wilson University of Oxford E.W.Beier, D.F.Cowen, M.Dunford, E.D.Frank, W.Frati, W.J.Heintzelman, P.T.Keener, J.R.Klein, C.C.M.Kyba, N.McCauley, D.S.McDonald, M.S.Neubauer, F.M.Newcomer, S.M.Oser, V.L Rusu, R.Van Berg, P.Wittich University of Pennsylvania R.Kouzes Princeton University E.Bonvin, M.Chen, E.T.H.Clifford, F.A.Duncan, E.D.Earle, H.C.Evans, G.T.Ewan, R.J.Ford, K.Graham, A.L.Hallin, W.B.Handler, P.J.Harvey, J.D.Hepburn, C.Jillings, H.W.Lee, J.R.Leslie, H.B.Mak, J.Maneira, A.B.McDonald, B.A.Moffat, T.J.Radcliffe, B.C.Robertson, P.Skensved Queen’s University D.L.Wark Rutherford Appleton Laboratory, University of Sussex R.L.Helmer, A.J.Noble TRIUMF Q.R.Ahmad, M.C.Browne, T.V.Bullard, G.A.Cox, P.J.Doe, C.A.Duba, S.R.Elliott, J.A.Formaggio, J.V.Germani, A.A.Hamian, R.Hazama, K.M.Heeger, K.Kazkaz, J.Manor, R.Meijer Drees, J.L.Orrell, R.G.H.Robertson, K.K.Schaffer, M.W.E.Smith, T.D.Steiger, L.C.Stonehill, J.F.Wilkerson University of Washington

The END

Backup Slides

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Global Solar Analysis Inputs: 37 Cl, latest Gallex/GNO, new SAGE, SK 1258-day day & night spectra SNO day spectrum (total: CC+NC+ES+background) SNO night spectrum (total: CC+NC+ES+background) 8 B floats free in fit, hep at 1 SSM SNO data only Global

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) What will SNO and KamLAND tell us in the future de Holanda et al., hep-ph/ Barger et al., hep-ph/

Alan Poon, EPS HEP 2003, Aachen, Germany (July 2003) Model Independent Test of MSW KamLAND establishes “LMA” region (  m 2 >10 -6 eV 2 ) Use CC/NC (solar model independent) to test for MSW effect in the Sun Fogli et al., hep-ph/ MSW offMSW On