2 -1 Chapter 2 The stack
2 -2 Stack and Queue Stack: Last-In-First-Out (LIFO) Last-Come-First-Serve (LCFS) only one end Queue: First-In-First-Out (FIFO) First-Come-First-Serve (FCFS) 2 ends one for entering one for leaving F E D C B A top Bottom of stack Stack
2 -3 A motion picture of a stack F E D C B A G F E D C B A H G F E D C B A I H G F E D C B A J I H G F E D C B A I H G F E D C B A H G F E D C B A G F E D C B A E D C B A F E D C B A K E D C B A E D C B A D C B A C B A G C B A (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) Push(S, G) Push(S, I) Pop(S) Push(S, K) top
2 -4 Operations of a stack push(S, i): add item i into the top of stack S. i = pop(S): remove the top of stack S and assign its value to i. empty(S) : check whether a stack S is empty or not. underflow : pop or access an item from an empty stack. i=stacktop(S): return the top of stack S. can be written as: i = pop(S) Push(S, i)
2 -5 Checking parentheses 7 - ( ( X * ( ( X + Y ) / ( J – 3 ) ) + Y ) / ( ) ) ( ( A + B ) ) A + B ( ** 檢查方法 : Check whether the parantheses are nested correctly.
2 -6 Checking various parentheses {x + (y - [a+b]) * c – [(d+e)]} / (h-j) ** 檢查方法 :. ** Check whether one left parenthesis matches the corresponding right parenthesis
2 -7 Pseudo code for parenthesis (1) vaild = true;/* assume the string is valid */ s = the empty stack; while (we have not read the entire string) { read the next symbol (symb) of the string; if (symb == ’(’ || symb == ’[’ || symb == ’{’)// 左括號 push(s, symb); if (symb == ’)’ || symb == ’]’ || symb == ’}’)// 右括號 if (empty(s)) valid = false; else{ i = pop(s); if (i is not the matching opener of symb) valid = false;// 括號形狀不同 } /* end else */ } /* end while */
2 -8 Pseudo code for parenthesis (2) if (!empty(s))// 最後須為空的 valid = false; if (valid) printf(”%s”, ”the string is valid”); else printf(”%s”, ”the string is invalid”);
2 -9 Representing a stack as an abstract data type abstract typedef > STACK (eltype); abstract empty(s) STACK(eltype) s; postcondition empty == (len(s) == 0); abstract eltype pop(s) STACK(eltype) s,s’; precondition empty(s) == FALSE; postcondition pop == first(s); s’==s; s == sub(s’, 1, len(s’)-1); abstract push(s, elt) STACK(eltype) s,s’; eltype elt; postcondition s’=s; s == + s’;
2 -10 Representing stacks with C A stack is an order collection of items. #define STACKSIZE 100 struct stack { int top; int items[STACKSIZE]; }; struct stack s;
2 -11 Different data types in a stack (1) #define STACKSIZE 100 #define INT 1 #define FLOAT 2 #define STRING 3 struct stackelement { int etype; /* etype equals INT, FLOAT, or STRING */ /* depending on the type of the */ /* corresponding element */ union { int ival; float fval; char *pval; /* pointer to a string */ } element; }; struct stack { int top; struct stacklement items[STACKSIZE]; };
2 -12 struct stack s; struct stackelement se;... se = s.items[s.top]; switch (se.etype) { case INT : printf(”%d \n”, se.element.ival); case FLOAT : printf(”%f \n”, se.element.fval); case STRING: printf(”%s \n”, se.element.pval); } /* end switch */ Different data types in a stack (2)
2 -13 Modulization (1) Individual functions are isolated into low-level modules. int empty(struct stack *ps) { if (ps->top == -1) return(TRUE); else return(FALSE); } /* empty */ How to call empty() in the calling program? if (empty (&s)) /* stack is empty */ else /* stack is not empty */ return (ps->top == -1)
2 -14 int pop(struct stack *ps) { if (empty(ps)){ printf(”%s”, “stack underflow”); exit(1); } /* end if */ return(ps->item[ps->top--]); } /* end pop */ How to call pop() in the calling program? x = pop (&s); Modulization (2)
2 -15 Modulization (3) void popandtest(struct stack *ps, int *px, int *pund) { // pop 及測試是否 underflow if (empty(ps)){ *pund = TRUE; return; } /* end if */ *pund = FALSE; *px = ps->items[ps->top--]; return; } /* end popandtest */ calling program: popandtest(&s, &x, &und); if (und) /* take corrective action */ else /* use value of x */
2 -16 void push(struct stack *ps, int x){ ps->items[++(ps->top)] = x; return; } /* end push */ overflow: put an item onto a full stack void push(struct stack *ps, int x) { if (ps->top == STACKSIZE-1){ printf(”%s”, ”stack overflow”); exit(1); } else ps->items[++(ps->top)] = x; return; } /* end push */ Push of a stack
2 -17 int stacktop(struct stack *ps) { if (empty(ps)){ printf(”%s”, ”stack underflow”); exit(1); } else return(ps->items[ps->top]); } /*end stacktop */ Pop of a stack
2 -18 Infix, postfix, prefix expressions infix A+B /* A, B: operands, +: operator */ postfix AB+ (reverse Polish notation) prefix +AB (Polish notation) Conversion from infix to postfix: e.g. A + (B*C) infix (inorder) A + (BC*) A(BC*)+ ABC * + postfix (postorder)
2 -19 Expression tree (1) + * A BC infix : A + (B*C) Prefix : + A * B C Postfix: A B C * + inorder traversal:1. left subtree 2. root 3. right subtree preorder traversal: 1. root 2. left subtree 3. right subtree postorder traversal: 1. left subtree 2. right subtree 3. root
2 -20 Expression tree (2) e.g. (A+B) * C infix (AB+) * C (AB+)C * AB+C * postfix + * C A B infix : (A+B) * C prefix : * + A B C postfix: A B + C *
2 -21 e.g. infix A$B*C-D+E/F/(G+H) /* $: exponentation, 次方 */ expression tree: + +/ /- * $ D C E F G H A B postfix : prefix : ** Expression tree (3)
2 -22 precedence: (, ) > $ > *, / > +, - left associative : A+B+C = (A+B)+C right associative: A$B$C = A$(B$C) e.g / + * 2 $ 3 + infix form: ((6 - (2+3)) * (3 + 8/2)) $ = Evaluating a postfix expression
2 -23 symb opnd1 opnd2 value opndstk 6 2 6, 2 3 6, 2, , , , 3, , 3, 8, 2 / , 3, , 7 * , 2 $ , Evaluation with a stack
2 -24 Algorithm ( 演算法 ) opndstk = the empty stack; /* scan the input string reading one */ /* element at a time into symb */ while (not end of input){ symb = next input character; if (symb is an operand) push(opndstk, symb); else{ /* symb is an operator */ opnd2 = pop(opndstk); opnd1 = pop(opndstk); value = result of applying symb to opnd1 and opnd2; push (opndstk, value); } /* end else */ } /* end while */ return(pop(opndstk)); **
2 -25 How to verify a postfix expression? ** 方法一 : 方法二 :
2 -26 Evaluating a postfix expression with C #include #define MAXCOLS 80 #define TRUE 1 #define FALSE 0 double eval(char[]); double pop(struct stack *); void push(struct stack *,double); int empty(struct stack *); int isdigit(char); double oper(int, double, double);
2 -27 void main() { char expr[MAXCOLS]; int position = 0; while ((expr[position++] = getchar()) != ’\n’); expr[--position] = ’\0’; printf (”%s%s”, ”the original postfix expression is”, expr); printf(”\n%f”, eval(expr)); } /* end main */ struct stack{ int top; double items[MAXCOLS]; };
2 -28 double eval(char expr[]) { int c, position; double opnd1, opnd2, value; struct stack opndstk; opndstk.top = -1; for (position = 0; (c = expr[position]) != ’\0’; position++) if (isdigit(c)) /* operand– convert the character representation */ /* of the digit into double and push it onto */ /* the stack */ push(&opndstk, (double) (c - ’0’); else{ /* operator */ opnd2 = pop(&opndstk); opnd1 = pop(&opndstk); value = oper(c, opnd1, opnd2); push(&opndstk, value); } /*end else */ return(pop(&opndstk)); } /*end eval */
2 -29 int isdigit(char symb) { return(symb >= ’0’ && symb <= ’9’); } double oper(int symb, double op1, double op2) { switch(symb){ case ’+’ : return (op1 + op2); case ’-’ : return (op1 – op2); case ’*’ : return (op1 * op2); case ’/’ : return (op1 / op2); case ’$’ : return (pow(op1, op2)); // 計算次方 default : printf(”%s”, ”illegal operation”); exit(1); } /* end switch */ } /* end oper */ 此程式無法處理 2-digit number 及 minus sign
2 -30 Conversion from infix to postfix e.g. A+B*C ABC*+ symb postfix string opstk 1 A A 2 + A + 3 B AB + 4 * AB + * 5 C ABC + * 6 ABC * + 7 ABC * + e.g. A*B+C AB*C+
2 -31 e.g. ((A-(B+C))*D)$(E+F) ABC+-D*EF+$ symb postfix string opstk ( ( ( (( A A (( - A ((- ( A ((-( B AB ((-( + AB ((-(+ C ABC ((-(+ ) ABC+ ((- ) ABC+- ( * ABC+- (* D ABC+-D (* ) ABC+-D* $ ABC+-D* $ ( ABC+-D* $( E ABC+-D*E $( + ABC+-D*E $(+ F ABC+-D*EF $(+ ) ABC+-D*F+ $ ABC+-D*EF+$
2 -32 Algorithm for conversion 1) 遇 operand, 直接 output 2) 遇 operator (a) 若此 operator 之 precedence 比 top of stack 高 ==> 此 operator 放入 stack. (b) 否則, 將所有比此 operator 之 precedence 還 高之 operator 全 pop 並 output, 再將比 operator 放入 stack. 3) 4) 5) **
2 -33 C program for conversion #include #define MAXCOLS 80 #define TRUE 1 #define FALSE 0 void postfix(char *, char *); int isoperand(char); void popandtest(struct stack *, char *, int *); int prcd(char, char); void push(struct stack *, char); char pop(struct stack *);
2 -34 struct stack { int top; char items[MAXCOLS]; } postfix(char infix[], char postr[]) { int position, und; int outpos = 0; char topsymb = ’+’; char symb; struct stack opstk; opstk.top = -1; /* the empty stack */ for (position = 0; (symb = infix[position])!= ’\0’; position++) if (isoperand(symb)) postr[outpos++] = symb; else{ popandtest(&opstk, &topsymb, &und); while (!und && prcd(topsymb, symb)){ postr[outpos++] = topsymb; popandtest(&opsatk, &topsymb, &und); } /* end while */
2 -35 if (!und) push(&opstk, topsymb); if (und || (symb != ’)’) ) push(&opstk, symb); else topsymb = pop(&opstk); } /* end else */ while (!empty(&opstk)) postr[outpos++] = pop(&opstk); postr[outpos] = ’\0’; return; } /* end postfix */
2 -36 evaluation algorithm 比 conversion algorithm 容易, 因為 conversion 必須考慮各種 operator 之 precedence, 而 evaluation 則在看到一個 operator 時, 即可計算 ( 沒有 precedence 問題 ) 如何檢查是否為 valid infix expression? ** Evaluation and conversion
2 -37 Stacks in C++ using template template // T is a parameter // T is of ordinal type // undetermined type class Stack { private: int top; T *nodes; public: Stack(); // default constructor int empty(void); void push(T &); T pop(void); T pop(int &);// example of overloading pop // to handle the functions // of popandtest default ~Stack(); // destructor };
2 -38 Stack implementation with templates Constructor for stack template Stack ::Stack() { top = -1; nodes = new T[STACKSIZE]; }; Destructor for stack template Stack ::~Stack() { delete nodes; };
2 -39 template int Stack ::empty (void) { return top < 0; }; template void Stack ::push(T & j) { if (top == STACKSIZE){ cout << “Stack overflow” << endl; return; } nodes[++top] = j; }; template T Stack ::pop(void) { T p; if (empty()){ cout << “Stack underflow” << endl; return p; } p = nodes[top--]; return p; };
2 -40 // The tasks of this function were formerly // performed by popandtest template T Stack ::pop(int & und) { T p; if (empty()){ und = 1; return p; } und = 0; p = nodes[top--]; return p; };
2 -41 To make use of the stack, include all of the prototype definitions // stackt.h #ifndef STACKT_H #define STACKT_H #include #define STACKSIZE 100 #endif
2 -42 Evaluating infix expression with stack void postfix(char *infix, char *postr); int prcd(char op1, char op2); int isoperand(char op); int isoperator(char op); long double eval(char *postr); long double oper(int symb, long double op1, long double op2); int prcd(char op1, char op2) // body of prcd goes here int isoperator(char op) // body of isoperator goes here int isoperand(char op) // body of isoperand goes here
2 -43 void postfix(char *infix, char *postr) { int position, und; int outpos = 0; char topsymb = ’+’; char symb; Stack opstk; for (position = 0; (symb = infix[position])!= ’\0’; position++) { if (isoperand(symb)) postr[outpos++] = symb; else{ topsymb = opstk.pop(und); while (!und && prcd(topsymb, symb)){ postr[outpos++] = topsymb; topsymb = opstk.pop(und); }
2 -44 if (!und) opstk.push(topsymb); if (und || (symb != ’)’) ) opstk.push(symb); else topsymb = opstk.pop(); } } /* end for */ while (!opstk.empty()) postr[outpos++] = opstk.pop(); postr[outpos] = ’\0’; } /* end postfix */
2 -45 long double oper(int symb,long double op1,long double op2) // body of oper goes here long double eval(char *postr) { int c, position; long double opnd1, opnd2, value; Stack opndstk; for (position = 0; (c = postr[position]) != ’\0’; position++) if (isoperand(c)) opndstk.push((float) (c-’0’)); else{ opnd2 = opndstk.pop(); opnd1 = opndstk.pop(); value = oper(c, opnd1, opnd2); opndstk.push(value); } return (opndstk.pop()); } /* end eval */
2 -46 void main(void) { char in[250], post[250]; long double res; cin >> in; cout << in << endl; postfix(in, post); res = eval(post); cout << res << endl; }