©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.

Slides:



Advertisements
Similar presentations
BUS 220: ELEMENTARY STATISTICS
Advertisements

BUS 220: ELEMENTARY STATISTICS Chapter 6: Discrete Probability Distribution.
Random Variables and Probability Distributions
© 2004 Prentice-Hall, Inc.Chap 5-1 Basic Business Statistics (9 th Edition) Chapter 5 Some Important Discrete Probability Distributions.
© 2003 Prentice-Hall, Inc.Chap 5-1 Basic Business Statistics (9 th Edition) Chapter 5 Some Important Discrete Probability Distributions.
© 2002 Prentice-Hall, Inc.Chap 5-1 Basic Business Statistics (8 th Edition) Chapter 5 Some Important Discrete Probability Distributions.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 7 Probability.
Discrete Probability Distributions Chapter 6 Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Longwood University 201 High Street Farmville, VA 23901
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Probabilistic and Statistical Techniques
Chapter 3 Probability Distribution. Chapter 3, Part A Probability Distributions n Random Variables n Discrete Probability Distributions n Binomial Probability.
1 1 Slide © 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 5: Probability Distributions: Discrete Probability Distributions.
Probability Distributions
Ka-fu Wong © 2003 Chap 6- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
Ka-fu Wong © 2003 Chap 4- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
QBM117 Business Statistics
Discrete Probability Distributions
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Probability Distributions Chapter 6.
© 2012 McGraw-Hill Ryerson Limited1 © 2009 McGraw-Hill Ryerson Limited.
Statistics Alan D. Smith.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Five Discrete Probability Distributions GOALS When you have completed.
Statistics for Managers Using Microsoft® Excel 5th Edition
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
1 Chapter 6 Discrete Probability Distributions 2 Goals 1.Define the terms: Probability distribution Random variable Continuous probability distributions.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
6- 1 Chapter Six McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete Probability Distributions.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
7- 1 Chapter Seven McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
Discrete Probability Distributions
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Discrete Probability Distributions. What is a Probability Distribution? Experiment: Toss a coin three times. Observe the number of heads. The possible.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete.
Discrete Probability Distributions Define the terms probability distribution and random variable. 2. Distinguish between discrete and continuous.
Definition A random variable is a variable whose value is determined by the outcome of a random experiment/chance situation.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
1 1 Slide University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 5: Probability Distributions:
PROBABILITY DISTRIBUTIONS Probability distributions → A listing of all the outcomes of an experiment and the probability assosiated with each outcome,
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted.
What Is Probability Distribution?Ir. Muhril A., M.Sc., Ph.D.1 Chapter 6. Discrete Probability Distributions.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6.
Probability Distributions
Chapter Five The Binomial Probability Distribution and Related Topics
Discrete Probability Distributions
Chapter Six McGraw-Hill/Irwin
Chapter 5 Created by Bethany Stubbe and Stephan Kogitz.
Discrete Probability Distributions
Probability Distributions
Probability Distributions
Discrete Probability Distributions
Probability Distributions
BUS511: Business Statistics
Probability distributions
Probability Distributions
Presentation transcript:

©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Probability Distributions Chapter 6

2 Define the terms probability distribution and random variable. Distinguish between discrete and continuous probability distributions. Calculate the mean, variance, and standard deviation of a discrete probability distribution. Describe the characteristics of and compute probabilities using the binomial probability distribution. Describe the characteristics of and compute probabilities using the hypergeometric probability distribution. Describe the characteristics of and compute probabilities using the Poisson GOALS

3 What is a Probability Distribution? Experiment: Toss a coin three times. Observe the number of heads. The possible results are: zero heads, one head, two heads, and three heads. What is the probability distribution for the number of heads?

4 Probability Distribution of Number of Heads Observed in 3 Tosses of a Coin

5 Characteristics of a Probability Distribution

6 Random Variables Random variable - a quantity resulting from an experiment that, by chance, can assume different values.

7 Types of Random Variables Discrete Random Variable can assume only certain clearly separated values. It is usually the result of counting something Continuous Random Variable can assume an infinite number of values within a given range. It is usually the result of some type of measurement

8 Discrete Random Variables - Examples The number of students in a class. The number of children in a family. The number of cars entering a carwash in a hour. Number of home mortgages approved by Coastal Federal Bank last week.

9 Continuous Random Variables - Examples The distance students travel to class. The time it takes an executive to drive to work. The length of an afternoon nap. The length of time of a particular phone call.

10 Features of a Discrete Distribution The main features of a discrete probability distribution are: The sum of the probabilities of the various outcomes is The probability of a particular outcome is between 0 and The outcomes are mutually exclusive.

11 The Mean of a Probability Distribution MEAN The mean is a typical value used to represent the central location of a probability distribution. The mean of a probability distribution is also referred to as its expected value.

12 The Variance, and Standard Deviation of a Probability Distribution Variance and Standard Deviation Measures the amount of spread in a distribution The computational steps are: 1. Subtract the mean from each value, and square this difference. 2. Multiply each squared difference by its probability. 3. Sum the resulting products to arrive at the variance. The standard deviation is found by taking the positive square root of the variance.

13 Mean, Variance, and Standard Deviation of a Probability Distribution - Example John Ragsdale sells new cars for Pelican Ford. John usually sells the largest number of cars on Saturday. He has developed the following probability distribution for the number of cars he expects to sell on a particular Saturday.

14 Mean of a Probability Distribution - Example

15 Variance and Standard Deviation of a Probability Distribution - Example

16 Binomial Probability Distribution Characteristics of a Binomial Probability Distribution There are only two possible outcomes on a particular trial of an experiment. The outcomes are mutually exclusive, The random variable is the result of counts. Each trial is independent of any other trial

17 Binomial Probability Formula

18 Binomial Probability - Example There are five flights daily from Pittsburgh via US Airways into the Bradford, Pennsylvania, Regional Airport. Suppose the probability that any flight arrives late is.20. What is the probability that none of the flights are late today?

19 Binomial Probability - Excel

20 Binomial Dist. – Mean and Variance

21 For the example regarding the number of late flights, recall that  =.20 and n = 5. What is the average number of late flights? What is the variance of the number of late flights? Binomial Dist. – Mean and Variance: Example

22 Binomial Dist. – Mean and Variance: Another Solution

23 Binomial Distribution - Table Five percent of the worm gears produced by an automatic, high- speed Carter-Bell milling machine are defective. What is the probability that out of six gears selected at random none will be defective? Exactly one? Exactly two? Exactly three? Exactly four? Exactly five? Exactly six out of six?

24 Binomial Distribution - MegaStat Five percent of the worm gears produced by an automatic, high- speed Carter-Bell milling machine are defective. What is the probability that out of six gears selected at random none will be defective? Exactly one? Exactly two? Exactly three? Exactly four? Exactly five? Exactly six out of six?

25 Binomial – Shapes for Varying  (n constant)

26 Binomial – Shapes for Varying n (  constant)

27 Cumulative Binomial Probability Distributions A study in June 2003 by the Illinois Department of Transportation concluded that 76.2 percent of front seat occupants used seat belts. A sample of 12 vehicles is selected. What is the probability the front seat occupants in at least 7 of the 12 vehicles are wearing seat belts?

28 Cumulative Binomial Probability Distributions - Excel

29 Finite Population A finite population is a population consisting of a fixed number of known individuals, objects, or measurements. Examples include: – The number of students in this class. – The number of cars in the parking lot. – The number of homes built in Blackmoor

30 Hypergeometric Distribution The hypergeometric distribution has the following characteristics: There are only 2 possible outcomes. The probability of a success is not the same on each trial. It results from a count of the number of successes in a fixed number of trials.

31 Hypergeometric Distribution Use the hypergeometric distribution to find the probability of a specified number of successes or failures if: – the sample is selected from a finite population without replacement – the size of the sample n is greater than 5% of the size of the population N (i.e. n/N .05)

32 Hypergeometric Distribution

33 Hypergeometric Distribution - Example PlayTime Toys, Inc., employs 50 people in the Assembly Department. Forty of the employees belong to a union and ten do not. Five employees are selected at random to form a committee to meet with management regarding shift starting times. What is the probability that four of the five selected for the committee belong to a union?

34 Hypergeometric Distribution - Example

35 Hypergeometric Distribution - Excel

36 Poisson Probability Distribution The Poisson probability distribution describes the number of times some event occurs during a specified interval. The interval may be time, distance, area, or volume. Assumptions of the Poisson Distribution (1) The probability is proportional to the length of the interval. (2) The intervals are independent.

37 Poisson Probability Distribution The Poisson distribution can be described mathematically using the formula:

38 Poisson Probability Distribution The mean number of successes  can be determined in binomial situations by n , where n is the number of trials and  the probability of a success. The variance of the Poisson distribution is also equal to n .

39 Assume baggage is rarely lost by Northwest Airlines. Suppose a random sample of 1,000 flights shows a total of 300 bags were lost. Thus, the arithmetic mean number of lost bags per flight is 0.3 (300/1,000). If the number of lost bags per flight follows a Poisson distribution with u = 0.3, find the probability of not losing any bags. Poisson Probability Distribution - Example

40 Poisson Probability Distribution - Table Assume baggage is rarely lost by Northwest Airlines. Suppose a random sample of 1,000 flights shows a total of 300 bags were lost. Thus, the arithmetic mean number of lost bags per flight is 0.3 (300/1,000). If the number of lost bags per flight follows a Poisson distribution with mean = 0.3, find the probability of not losing any bags

41 End of Chapter 6