16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou,

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Overview of 300 Hz Conventional e + Source for ILC Truly Conventional Collaboration ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg NIM A672.
1 st October 2008 Réunion sur la contribution exceptionnelle de la FrancePositron generation L. Rinolfi (CERN) Contribution exceptionnelle de la France.
R.Chehab/Posipol2008/Hiroshima, june POSITRON SOURCES USING CHANNELING FOR ILC & CLIC R.Chehab, X.Artru, M.Chevallier, IPNL/IN2P3/CNRS, Universite.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
1 st October Linear Collider workshop The CLIC/ILC common work plan progress J. Clarke and L. Rinolfi.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
E+ stacking simulations update Frank Zimmermann on behalf of the POSIPOL Collaboration Particular thanks to: Fanouria Antoniou, Robert Chehab, Maxim Korostelev,
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
Issues for e+ stacking in the rings Frank Zimmermann IWLC2010, CICG, Geneva, 21 October 2010 thanks to Fanouria Antoniou, Eugene Bulyak, Peter Gladkikh,
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
15 th October CLIC workshop The CLIC/ILC common issues for the sources Jim Clarke and Louis Rinolfi.
ParameterL-bandS-bandX-band Length (m) Aperture 2a (mm) Gradient (Unloaded/Loaded) (MV/m)17/1328/2250/40 Power/structure (MW) Beam.
2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne L. Rinolfi Possible e - and e + sources for LHeC 1 Thanks to O. Brüning, A. Vivoli and F. Zimmermann.
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
23 th July 2010 CLIC meeting L. Rinolfi POSIPOL workshop 2010 L. Rinolfi A brief overview.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
17 th November2008 ILC 08 workshopL. Rinolfi CLIC e - and e + sources and ILC/CLIC common studies L. Rinolfi On behalf of the ILC/CLIC e + working group.
22 th October 2010 IWLC Sources working group J. Clarke, T. Omori, L. Rinolfi, A. Variola Summary of Sources working group WG1 with contributions from.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
27 th May 2009 CLIC ACE meetingL. Rinolfi CLIC Main Beam generation Baseline configuration only L. Rinolfi for the CLIC Injector complex team.
Positron Sources for Linear Colliders* Wei Gai JPOS 2009, Jefferson Lab, March 26, 2009 * Acknowledgement of contributions from the ILC and CLIC e+ collaborations.
CLIC polarized e+ source based on laser Compton scattering Frank Zimmermann CLIC Meeting, 16. December 2005 Thanks to Eugene Bulyak, Masao Kuriki, Klaus.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
POSIPOL Berlin ILC/CLIC e + generation working group Wei Gai, ANL Louis Rinolfi, CERN Thanks to Omori-san for the coordination of the Webex meetings.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Positron Source for Linear Collider Wanming Liu 2013 DOE Review.
28 th August 2011 POSIPOL Workshop – IHEP-Beijing- ChinaL. Rinolfi Louis Rinolfi CLIC e + status.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
R.Chehab/FCPPL2010/Lyon1 AN HYBRID POSITRON SOURCE FOR ILC -Collaboration IN2P3-IHEP, with BINP, KEK, Hiroshima-U, CERN- X.Artru, R.Chehab, M.Chevallier.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
20 th October 2010 IWLC Sources working groupL. Rinolfi Louis Rinolfi CLIC e - and e + sources overview for the CLIC Sources collaboration.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
A.Variola LCWS07 DESY-Hambourg Posipol A.Variola LCWS07 DESY-Hambourg Some Posipol 2007 numbers ~ 55 inscriptions 3 days workshop 8 sponsors Different.
FCC-ee injector complex including Booster Yannis Papaphilippou, CERN Thanks to: M.Aiba (PSI), Ö.Etisken (Ankara Un.), K.Oide (KEK), L.Rinolfi (ESI-JUAS),
Compton stacking ring update
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
LHeC Sources Rinolfi CERN Thanks to:
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Update on e+ Source Modeling and Simulation
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Test of Hybrid Target at KEKB LINAC
Status of the CLIC main beam injectors
CLIC Damping ring beam transfer systems
CLIC e+ status Louis Rinolfi.
CLIC Main Beam Sources and their transfer lines
ILC/CLIC e+ generation working group
Update of Damping Ring parameters
Injection facility for Novosibirsk Super Charm Tau Factory
SuperB project. Injection scheme design status
Pol. positron generation scheme for ILC
CLIC source update CLIC main beam injectors reminder
Capture and Transmission of polarized positrons from a Compton Scheme
Summary for the Sources working group
Status of the CLIC Injector studies
CEPC Injector Damping Ring
CEPC Injector positron source
with contributions from
Damping Ring parameters for the new accelerating structure
A POSITRON SOURCE USING CHANNELING IN CRYSTALS FOR LINEAR COLLIDERS
Damping Ring parameters for the new accelerating structure
Kicker and RF systems for Damping Rings
Damping Ring parameters with reduced bunch charge
Presentation transcript:

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou, F. Zimmermann / CERN R. Chehab / IPNL/IN2P3 - Lyon, V.M.Strakhovenko / BINP - Novosibirsk A. Variola, A. Vivoli / LAL - Orsay, A. Ferrari / Uppsala University E. Buylak, P. Gladkikh / NCS / KIPT - Kharkov W. Gai, W. Liu / ANL, J. Sheppard / SLAC T. Kamitani, T. Omori / KEK, M. Kuriki / Hiroshima University

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN The CLIC Injector complex in 2008 e - gun 3 TeV Base line configuration Laser DC gun Polarized e - Pre-injector Linac for e MeV e - /  Target Pre-injector Linac for e MeV Primary beam Linac for e - 5 GeV Injector Linac 2.2 GeV e + DR e + PDR Booster Linac 6.6 GeV 4 GHz e + BC1 e - BC1 e + BC2 e - BC2 e + Main Linac e - Main Linac 12 GHz, 100 MV/m, 21 km 2 GHz e - DR e - PDR 2 GHz 4 GHz 12 GHz 9 GeV 48 km  30 m GeV  e  Target AMD GeV 365 m GeV 365 m 473 m 228 m 365 m

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN NLC (1 TeV) CLIC 2008 (3 TeV) ILC (Nominal) Energy E GeV8 915 Bunch population N Nb bunches / train n b Bunch spacing  t b ns (6 RF periods) 369 Train length t pulse ns Emittances  x,  y nm, nm.rad3300, , , 24 rms bunch length  z mm rms energy spread  E  0.68 (3.2 % FW) Repetition frequency f rep Hz Beam power P kW Main beam parameters comparison At the entrance of the Main Linac for e - and e +

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN # of bunches per pulse # of positrons per bunch # of positrons per pulse Total charge (nC) Current (A) Exit of BC2 = Entrance of Main Linac ( 9 GeV) 3124 x x At exit Pre- Damping ring (2.424 GeV) x x At exit Injector Linac (2.424 GeV) x x At exit Pre- Injector Linac (200 MeV) x x Assuming ~ 90 % efficiency between the PDR and the Main Linac CLIC parameters relevant for e + source Repetition frequency 50 Hz Total pulse length 156 ns Assuming ~ 70 % capture efficiency in the PDR Assuming ~ 95 % efficiency between the Pre-Injector and the Injector Linac

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Conventional e + source based on channelling A e - beam impinges on the crystal: - energy of 5 GeV - beam size of 2.5 mm crystal amorphous e-e- e-e- e+e+ Yield: 0.9 e + / e 200 MeV R. Chehab, V. Strakovenko, A. Variola, A. Vivoli / LAL A crystal e+ source : - a 1.4 mm thick W crystal oriented along axis - a 10 mm thick W amorphous disk  Charged particles are swept off after the crystal:only  (> 2MeV) impinge on the amorphous target. The distance between the 2 targets is 2 meters. e-e- e+e+

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC Channeling e + source ParameterUnitCLIC Primary e - Beam EnergyGeV5 N e - /bunch N bunches / pulse-312 N e - / pulse Pulse lengthns156 Repetition frequencyHz50 Beam powerkW94 Linac frequencyGHz2 Beam radius (rms)mm2.5 Bunch length (rms)mm0.3 ParameterUnit TargetCrystalAmorph. MaterialWW Lengthmm1.410 Beam power deposited kW Deposited P / Beam Power %0.28 Pulse energy density GeV/mm Energy lost per volume 10 9 GeV/mm Peak energy deposition density (PEDD) J/g Yield (at 200 MeV): 0.9 e + / e - Experimental limit found at SLAC: PEDD = 35 J/g

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Beam parameters with channeling Positrons after capture section at 270 MeV ParameterUnitCLIC Energy (E)GeV0.270 No. of e + / bunch (N) Bunch length (rms)mm8 Energy Spread (rms)%5 Longitudinal emittance (  l ) eV.m10 5 Horizontal emittance (  x ) / (  x ) mm. mrad12 / 6300 Vertical emittance (  y ) / (  y ) mm. mrad12 / 6300 Q ~ 1 nC See R. Chehab talk at this workshop

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN ParameterUnit Conventional target CERN simulations Channeling LAL simulations Energy (E)GeV No. of e + / bunch (N) Bunch length (rms)mm58 Energy Spread (rms)%3.55 Horizontal emittance (  x ) mm. mrad Vertical emittance (  y ) mm. mrad Beam parameters comparison Accelerating gradient MV/m Positrons after capture section at the end of the pre-injector linac

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Longitudinal phase space at 2.4 GeV Energy spread = 65 MeV  p/p (rms) = 2.7 % If PDR acceptance is  p/p = ± 1 % = > 82 % capture efficiency e+e+

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Required CLIC Pre-Damping Ring PARAMETERPDR energy [GeV]2.424 circumference [m]365.2 bunch population [10 +9 ]4.4 bunch spacing [ns]0.5 number of bunches/train312 number of trains1 store time/train [ms]20 rms bunch length [mm] at injection5 rms momentum spread [%] at injection2.7 hor. normalised emittance [  m] at ejection63 ver. normalised emittance [  m] at ejection1.5 hor./ver./ lon./ damping times [ms]1 / 1 / 0.5 number of RF cycles1 repetition rate [Hz]50 RF frequency [GHz]2 > ± 1% as small as possible

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC base line configuration for e + source e - /  Target Primary beam Linac for e - 5 GeV 2 GHz  e  Target AMD Pre-injector Linac for e MeV Thermionic gun For the base line configuration, based on channeling process, a solution exists with a single target station providing unpolarized e + to fulfill the CLIC parameters. The channeling process allows a good e + yield and one of the main advantage is the reduction of the beam energy deposition in the targets.

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC polarized e + source  Undulator  Laser Compton  Drive Beam Linac => no laser stacking cavity & no stacking in the PDR  Storage Ring => laser stacking cavity + stacking in the PDR  ERL => laser stacking cavity + stacking in the PDR

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Undulator K = 0.75 u = 1.5 cm L = 100 m Pre-Injector Linac G = 20 MV/m E = 200 MeV f RF = 1.5 GHz B = 0.5 T Injector Linac G = 17 MV/m E = GeV f RF = 1.5 GHz f rep = 50 Hz CLIC 2007 based on undulator scheme 250 GeV Cleaning chicane NC Linac 2.2 GeV To the IP e - beam Ti alloy 450 m e+e+ e+e+

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Drive e- beam energy: 250GeV Undulator K: 0.75 Undulator period: 1.5cm Length of undulator: 100m Drift to target: 450m Accelerator gradient and focusing: 50MV/m for beam energy <250MeV, 0.5T background solenoid field focusing; for 250MeV to 2.4GeV, 25MV/m with discrete FODO set. OMD: Non immersed, ramping distance 2cm 1)7T-0.5T and 5T-0.5T, the thickness varies from 15cm to 80cm in 5cm steps; 2) the thickness fixed at 20cm, B0-0.5T, B0 varies from 1 T to 10T Photon collimator: None Target material: 0.4 rl Titanium, non-immersed Yield is calculated as Ne+ captured/Ne- in drive beam. Positron capture is calculated by numerical cut using damping ring acceptance window: +/-7.5 degrees of RF(1.3GHz),  x+  y< 0.09  m.rad,1% energy spread with beam energy ~2.4GeV Optimizing for yield W. Gai, W. Liu / ANL, J. Sheppard / SLAC

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Yield as function of drive beam energy & field

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Yield and polarization

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN e + injector, 2.4 GeV e - injector 2.4 GeV CLIC 3 TeV e + main linac e - main linac, 12 GHz, 100 MV/m, km BC2 BC1 e + DR 365m e - DR 365m booster linac, 9 GeV decelerator, 24 sectors of 876 m IP BDS 2.75 km BDS 2.75 km 48.3 km drive beam accelerator 2.38 GeV, 1.0 GHz combiner rings Circumferences delay loop 72.4 m CR m CR m CR1 CR2 delay loop 326 klystrons 33 MW, 139  s 1 km CR2 delay loop drive beam accelerator 2.38 GeV, 1.0 GHz 326 klystrons 33 MW, 139  s 1 km CR1 TA R=120m TA R=120m 245m e + PDR 365m e - PDR 365m Linac with optical cavities e- beam sent to ns CLIC based on Linac scheme

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Linac scheme with Drive Beam ParametersCLIC Energy2.38 GeV Current101 A Nb bunches / train2904 e - Bunch population5 x Bunch charge8.4 nC Repetition fequency50 Hz 2.4 GeV 100A e - beam  beam e + beam  to e + conv. target V. Yakimenko and I. Pogorelski (BNL) proposal for ILC to be investigated for CLIC 12 GHz

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN The CLIC Injector complex (Compton) 3 TeV Laser Compton ring configuration Laser DC gun Polarized e - Pre-injector Linac for e MeV e + Target Pre-injector Linac for e MeV Injector Linac 2.2 GeV e + DR GeV 365 m Booster Linac 6.6 GeV 4 GHz e + BC1 e - BC1 e + BC2 e - BC2 e + Main Linac e - Main Linac 2 GHz e - DR e - PDR 2 GHz 4 GHz 12 GHz 9 GeV 48 km e - Drive Linac 1.3 GeV Compton ring e + PDR and Accumulator ring  2 GHz RF gun Stacking cavity GeV 365 m GeV 365 m GeV 365 m

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN e + target Pre-injector Linac for e MeV Injector Linac 2.2 GeV e + DR GeV 2 GHz GeV Drive Linac 1.3 GeV Compton ring e + PDR and Accumulator ring  2 GHz 50 Hz CLIC Compton scheme Compton configuration for polarized e + and low e + /  yield RF gun 1 YAG Laser pulse 2 GHz Stacking cavity 450 turns makes 312 bunches with 4.4x10 9 e + /bunch C = 47 m, 156 ns/turn, 312 bunches with 6.2x10 10 e - /bunch 9.8x10 6 pol. e + /turn/bunch  (23-29 MeV) 7x10 8 /turn/bunch 156 ns x450 turns => 70  s pulse length for both linacs

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN PARAMETERPDR energy [GeV]2.424 number of trains1 rms momentum spread [%] at injection2.7 hor./ver./ lon./ damping times [ms]1 / 1 / 0.5 repetition rate [ms]20 RF frequency [GHz]2 CLIC Pre-Damping Ring optimization 1) The rms momentum spread at injection could be reduced by implementing: a) a bunch compressor at the entrance of the injector Linac b) a harmonic cavity which smooth the longitudinal distribution. 2) The transverse damping time should be ≈ 1 ms (in order to allow ≈ 10 damping times). It remains roughly 10 ms for the stacking. 3) The stacking efficiency could also be improved by putting 2 trains in the PDR.

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Compton e + source parameters ParametersCLIC 2007CLIC 2008ILC Energy1.3 GeV1.06 GeV1.3 GeV Circumference68 m47 m277 m RF frequency1.5 GHz2 GHz650 MHz Bunch spacing0.20 m0.15 m0.923 m Nb bunches stored e - Bunch population6.2 x Nb optical cavities1130 Photons/bunch/turn0.7 x x x 10 10

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC Compton ring E. Bulyak, P. Gladkikh / NCS KIPT ParametersCLIC 2007CLIC 2008 Energy1.3 GeV1.06 GeV RF frequency1.5 GHz2 GHz RF voltage50 MV150 MV e - Bunch charge10 nC e - bunch length at IP5 mm Synchrotron losses400 keV/turn213 keV/turn Laser photon energy1.164 eV Laser rms pulse length0.9 mm Laser rms pulse radius0.005 mm Laser pulse energy600 mJ592 mJ Full cycle (turns)15000

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN e + target Pre-injector Linac for e MeV 2 GHz Drive Linac 1.06 GeV Compton ring  2 GHz 50 Hz CLIC Compton scheme Compton configuration for polarized e + and high e + /  yield RF gun 1 YAG Laser pulse Stacking cavity C = 47 m, 156 ns/turn, 312 bunches with 6.2x10 10 e - /bunch 5 x10 8 pol. e + /turn/bunch  ( MeV) 2.1x10 9  /turn/bunch 592 mJ W sliced rod target 3 rad length => yield 0.48 e + /  => Stacking simplified E. Bulyak / NCS KIPT

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Energy spread in CLIC Compton ring E = 1.06 GeV Double chicane 2 RF cavities => 150 MV Emittances after turns:  H = 21 nm. rad  V = 1 nm. rad Max energy spread ~ 1 % E. Bulyak, P. Gladkikh / NCS KIPT

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Photons from CLIC Compton ring E. Bulyak, P. Gladkikh / NCS KIPT K: 0.5 mrad I: 0.4 mrad G: 0.3 mrad E: 0.2 mrad C: 0.1 mrad Collimation angles Max polarization ~ 75 %

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Studies and R&D for Compton scheme Compton ring beam dynamics and design studies (NCS-KIPT, LAL, KEK, …) Laser source (see Posipol 2006, 2007 and 2008 for companies involved ) Laser stacking cavity (KEK, LAL, IHEP, Hiroshima,… ) Target and e + capture (LAL, IPNL-Lyon, ANL, CERN, IHEP,… ) e + stacking in Pre-Damping Ring and Damping Ring (CERN,… ) Collaboration on CLIC study for e + sources is always welcome

16 th June 2008 POSIPOL 2008L. Rinolfi / CERN Conclusion 1) After the CLIC major changes in 2007, studies and optimization continue on the CLIC structures and possible changes could still occur. 2) For the unpolarized e +, a conventional source, based on channeling process, fulfills the CLIC requirements with a single target station. 3) For polarized e + based on Undulator, studies continue. 4) For polarized e + based on Compton back scattering, progress have been made (Ring & Linac) but several studies and R&D are still necessary. 5) The design of a CLIC e + Pre-Damping Ring has just started. The Compton ring seems the most promising option for CLIC polarized e +.