Link Layer 5.1 Introduction and services

Slides:



Advertisements
Similar presentations
11-1 Last time □ Distance vector link cost changes ♦ Count-to-infinity, poisoned reverse □ Hierarchical routing ♦ Autonomous Systems ♦ Inter-AS, Intra-AS.
Advertisements

Introduction1-1 1DT014/1TT821 Computer Networks I Chapter 5 Link Layer and LANs.
5: DataLink Layer5-1 Asynchronous Transfer Mode: ATM r 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service.
Chapter 5 Link Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 23.
5/31/05CS118/Spring051 twisted pair hub 10BaseT, 100BaseT, hub r T= Twisted pair (copper wire) r Nodes connected to a hub, 100m max distance r Hub: physical.
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
5: DataLink Layer5-1 Cerf & Kahn’s Internetwork Architecture What is virtualized? r two layers of addressing: internetwork and local network r new layer.
5: DataLink Layer ATM. Trouble compiling the project code on Ubuntu: r If you get the error: h_addr not a member of struct hostent In the file.
Link Layer & Physical Layer CPE 400 / 600 Computer Communication Networks Lecture 24.
1 ATM and MPLS ECS 152A. 2 Virtualization of networks Virtualization of resources: a powerful abstraction in systems engineering: r computing examples:
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
5: DataLink Layer5a-1 Interconnecting LANs Q: Why not just one big LAN? r Limited amount of supportable traffic: on single LAN, all stations must share.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
VLANs Port-based VLAN: switch ports grouped (by switch management software) so that single physical switch …… Switch(es) supporting VLAN capabilities can.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 13.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
5: DataLink Layer5a-1 Summary of MAC protocols r What do you do with a shared media? m Channel Partitioning, by time, frequency or code Time Division,Code.
EE 4272Spring, 2003 Chapter 11. ATM and Frame Relay Overview of ATM Protocol Architecture ATM Logical Connections ATM Cells ATM Service Categories ATM.
Computer Networks ATM and MPLS Professor Hui Zhang
PPP, ATM, MPLS EECS 489 Computer Networks Z. Morley Mao Monday March 12, 2007 Acknowledgement: Some slides.
HDLC and PPP. The Data Link Layer in the Internet A home personal computer acting as an internet host. Technology like Ethernet cannot provide “high-level”
CS 5565 Network Architecture and Protocols Godmar Back Lecture 25.
Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1.
3-1 Last time □ Finished introduction and overview: ♦ Network access and physical media ♦ Internet structure and ISPs ♦ Delay & loss in packet-switched.
Chapter 5 outline 5.1 Introduction and services
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
Introduction 1 Lecture 26 Link Layer (PPP, Virtualization) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
ATM and Multi-Protocol Label Switching (MPLS)
Asynchronous Transfer Mode: ATM r 1980s/1990’s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture.
5: DataLink Layer5-1 VLANs. 5: DataLink Layer5-2 Introduction r Need to have different broadcast domains on the same physical network r E.g. Consider.
Chapter 5: The Data Link Layer
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Introduction 1-1 EKT355/4 ADVANCED COMPUTER NETWORK MISS HASNAH AHMAD School of Computer & Communication Engineering.
CHAPTER #6  Introducti on to ATM. Contents  Introduction  ATM Cells  ATM Architecture  ATM Connections  Addressing and Signaling  IP over ATM.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
ATM r ATM (Asynchronous Transfer Mode) is the switching and transport technology of the B-ISDN (Broadband ISDN) architecture (1980) r Goals: high speed.
5: Link Layer Part Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
Chapter 14 Connection-Oriented Networking and ATM
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 Point to Point Data Link Control r one sender, one receiver, one link: easier than broadcast link: m no Media Access Control m no.
Ethernet Switches r layer 2 (frame) forwarding, filtering using LAN addresses r Switching: A-to-B and A’- to-B’ simultaneously, no collisions r large number.
Forwarding.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Chapter 5 Link Layer and LAN Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of.
Virtual-Circuit Switching: ATM (Asynchronous Transmission Mode) and MPLS (Multiprotocol Label Switching)
Department of Computer and IT Engineering University of Kurdistan
5: DataLink Layer5-1 Virtualization of networks Virtualization of resources: powerful abstraction in systems engineering: r computing examples: virtual.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CS 457 – Lecture 3 Link Layer Protocols Fall 2011.
INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723
Asynchronous Transfer Mode (ATM) Architecture and Operation
Virtualization of networks
Chapter 5 Link Layer and LANs
CS 5565 Network Architecture and Protocols
EE 122: Lecture 19 (Asynchronous Transfer Mode - ATM)
Network Layer Goals: Overview:
Part 5: Link Layer Technologies
Hubs Hubs are essentially physical-layer repeaters:
Point to Point Data Link Control
Hubs Hubs are essentially physical-layer repeaters:
Interconnecting LANs Q: Why not just one big LAN?
Instructor Mazhar Hussain
Presentation transcript:

Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5.5 Ethernet 5.6 Hubs and switches 5.7 PPP 5.8 Link Virtualization: ATM 5: DataLink Layer

Point to Point Data Link Control one sender, one receiver, one link: easier than broadcast link: no Media Access Control no need for explicit MAC addressing e.g., dialup link, ISDN line popular point-to-point DLC protocols: PPP (point-to-point protocol) HDLC: High level data link control (Data link used to be considered “high layer” in protocol stack! 5: DataLink Layer

PPP Design Requirements [RFC 1557] packet framing: encapsulation of network-layer datagram in data link frame carry network layer data of any network layer protocol (not just IP) at same time ability to demultiplex upwards bit transparency: must carry any bit pattern in the data field error detection (no correction) connection liveness: detect, signal link failure to network layer network layer address negotiation: endpoint can learn/configure each other’s network address 5: DataLink Layer

PPP non-requirements no error correction/recovery no flow control out of order delivery OK no need to support multipoint links (e.g., polling) Error recovery, flow control, data re-ordering all relegated to higher layers! 5: DataLink Layer

PPP Data Frame Flag: delimiter (framing) Address: does nothing (only one option) Control: does nothing; in the future possible multiple control fields Protocol: upper layer protocol to which frame delivered (eg, PPP-LCP, IP, IPCP, etc) 5: DataLink Layer

PPP Data Frame info: upper layer data being carried check: cyclic redundancy check for error detection 5: DataLink Layer

Byte Stuffing “data transparency” requirement: data field must be allowed to include flag pattern <01111110> Q: is received <01111110> data or flag? Sender: adds (“stuffs”) extra < 01111110> byte after each < 01111110> data byte Receiver: two 01111110 bytes in a row: discard first byte, continue data reception single 01111110: flag byte 5: DataLink Layer

Byte Stuffing flag byte pattern in data to send flag byte pattern plus stuffed byte in transmitted data 5: DataLink Layer

PPP Data Control Protocol Before exchanging network-layer data, data link peers must configure PPP link (max. frame length, authentication) learn/configure network layer information for IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address 5: DataLink Layer

Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5.5 Ethernet 5.6 Hubs and switches 5.7 PPP 5.8 Link Virtualization: ATM and MPLS 5: DataLink Layer

Virtualization of networks Virtualization of resources: powerful abstraction in systems engineering: computing examples: virtual memory, virtual devices Virtual machines: e.g., java IBM VM os from 1960’s/70’s layering of abstractions: don’t sweat the details of the lower layer, only deal with lower layers abstractly 5: DataLink Layer

The Internet: virtualizing networks 1974: multiple unconnected nets ARPAnet data-over-cable networks packet satellite network (Aloha) packet radio network … differing in: addressing conventions packet formats error recovery routing ARPAnet satellite net "A Protocol for Packet Network Intercommunication", V. Cerf, R. Kahn, IEEE Transactions on Communications, May, 1974, pp. 637-648. 5: DataLink Layer

The Internet: virtualizing networks Internetwork layer (IP): addressing: internetwork appears as single, uniform entity, despite underlying local network heterogeneity network of networks Gateway: “embed internetwork packets in local packet format or extract them” route (at internetwork level) to next gateway gateway ARPAnet satellite net 5: DataLink Layer

Cerf & Kahn’s Internetwork Architecture What is virtualized? two layers of addressing: internetwork and local network new layer (IP) makes everything homogeneous at internetwork layer underlying local network technology cable satellite 56K telephone modem today: ATM, MPLS … “invisible” at internetwork layer. Looks like a link layer technology to IP! 5: DataLink Layer

ATM and MPLS ATM, MPLS separate networks in their own right different service models, addressing, routing from Internet viewed by Internet as logical link connecting IP routers just like dialup link is really part of separate network (telephone network) ATM, MPLS: of technical interest in their own right 5: DataLink Layer

Asynchronous Transfer Mode: ATM 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport of carry voice, video, data meeting timing/QoS requirements of voice, video (versus Internet best-effort model) “next generation” telephony: technical roots in telephone world packet-switching (fixed length packets, called “cells”) using virtual circuits 5: DataLink Layer

ATM architecture data segmentation/reassembly physical ATM AAL end system switch adaptation layer: only at edge of ATM network data segmentation/reassembly roughly analagous to Internet transport layer ATM layer: “network” layer cell switching, routing physical layer 5: DataLink Layer

ATM: network or link layer? Vision: end-to-end transport: “ATM from desktop to desktop” ATM is a network technology Reality: used to connect IP backbone routers “IP over ATM” ATM as switched link layer, connecting IP routers IP network ATM network 5: DataLink Layer

ATM Adaptation Layer (AAL) ATM Adaptation Layer (AAL): “adapts” upper layers (IP or native ATM applications) to ATM layer below AAL present only in end systems, not in switches AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells analogy: TCP segment in many IP packets physical ATM AAL end system switch 5: DataLink Layer

ATM Adaptation Layer (AAL) [more] Different versions of AAL layers, depending on ATM service class: AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video AAL5: for data (eg, IP datagrams) User data AAL PDU ATM cell 5: DataLink Layer

ATM Layer Service: transport cells across ATM network analogous to IP network layer very different services than IP network layer Guarantees ? Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Congestion feedback no (inferred via loss) no congestion yes Bandwidth none constant rate guaranteed minimum Loss no yes Order no yes Timing no yes 5: DataLink Layer

ATM Layer: Virtual Circuits VC transport: cells carried on VC from source to dest call setup, teardown for each call before data can flow each packet carries VC identifier (not destination ID) every switch on source-dest path maintain “state” for each passing connection link,switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf. Permanent VCs (PVCs) long lasting connections typically: “permanent” route between to IP routers Switched VCs (SVC): dynamically set up on per-call basis 5: DataLink Layer

ATM VCs Advantages of ATM VC approach: QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter) Drawbacks of ATM VC approach: Inefficient support of datagram traffic one PVC between each source/dest pair) does not scale (N*2 connections needed) SVC introduces call setup latency, processing overhead for short lived connections 5: DataLink Layer

ATM Layer: ATM cell 5-byte ATM cell header 48-byte payload Why?: small payload -> short cell-creation delay for digitized voice halfway between 32 and 64 (compromise!) Cell header Cell format 5: DataLink Layer

ATM cell header will change from link to link thru net VCI: virtual channel ID will change from link to link thru net PT: Payload type (e.g. RM cell versus data cell) CLP: Cell Loss Priority bit CLP = 1 implies low priority cell, can be discarded if congestion HEC: Header Error Checksum cyclic redundancy check 5: DataLink Layer

ATM Physical Layer (more) Two pieces (sublayers) of physical layer: Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below Physical Medium Dependent: depends on physical medium being used TCS Functions: Header checksum generation: 8 bits CRC Cell delineation With “unstructured” PMD sublayer, transmission of idle cells when no data cells to send 5: DataLink Layer

ATM Physical Layer Physical Medium Dependent (PMD) sublayer SONET/SDH: transmission frame structure (like a container carrying bits); bit synchronization; bandwidth partitions (TDM); several speeds: OC3 = 155.52 Mbps; OC12 = 622.08 Mbps; OC48 = 2.45 Gbps, OC192 = 9.6 Gbps TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps unstructured: just cells (busy/idle) 5: DataLink Layer

IP-Over-ATM IP over ATM replace “network” (e.g., LAN segment) with ATM network ATM addresses, IP addresses Classic IP only 3 “networks” (e.g., LAN segments) MAC (802.3) and IP addresses ATM network Ethernet LANs Ethernet LANs 5: DataLink Layer

IP-Over-ATM AAL ATM phy Eth IP app transport 5: DataLink Layer

Datagram Journey in IP-over-ATM Network at Source Host: IP layer maps between IP, ATM dest address (using ARP) passes datagram to AAL5 AAL5 encapsulates data, segments cells, passes to ATM layer ATM network: moves cell along VC to destination at Destination Host: AAL5 reassembles cells into original datagram if CRC OK, datagram is passed to IP 5: DataLink Layer

IP-Over-ATM Issues: IP datagrams into ATM AAL5 PDUs from IP addresses to ATM addresses just like IP addresses to 802.3 MAC addresses! ATM network Ethernet LANs 5: DataLink Layer

Multiprotocol label switching (MPLS) initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding borrowing ideas from Virtual Circuit (VC) approach but IP datagram still keeps IP address! PPP or Ethernet header MPLS header IP header remainder of link-layer frame label Exp S TTL 20 3 1 5 5: DataLink Layer

MPLS capable routers a.k.a. label-switched router forwards packets to outgoing interface based only on label value (don’t inspect IP address) MPLS forwarding table distinct from IP forwarding tables signaling protocol needed to set up forwarding RSVP-TE forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !! use MPLS for traffic engineering must co-exist with IP-only routers 5: DataLink Layer

MPLS forwarding tables in out out label label dest interface 10 A 0 in out out label label dest interface 10 6 A 1 12 9 D 0 12 D 0 8 A 1 R6 D 1 1 R4 R3 R5 A R2 in out out label label dest interface 6 - A 0 R1 in out out label label dest interface 8 6 A 0 5: DataLink Layer

Chapter 5: Summary principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing instantiation and implementation of various link layer technologies Ethernet switched LANS PPP virtualized networks as a link layer: ATM, MPLS 5: DataLink Layer

Chapter 5: let’s take a breath journey down protocol stack complete (except PHY) solid understanding of networking principles, practice ….. could stop here …. but lots of interesting topics! Wireless – for a more advanced class Multimedia – Not time this year: too much IP Subnetting security – Join me in CPTR 427 network management 5: DataLink Layer