Самарский государственный аэрокосмический университет имени академика С. П. Королева 1 I. E. DAVYDOV Modern Methods of Rockets Stability and Controllability.

Slides:



Advertisements
Similar presentations
Root Locus Diagrams Professor Walter W. Olson
Advertisements

Dynamic Behavior of Closed-Loop Control Systems
Chapter 4 Modelling and Analysis for Process Control
Chapter 10 Stability Analysis and Controller Tuning
9.11. FLUX OBSERVERS FOR DIRECT VECTOR CONTROL WITH MOTION SENSORS
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
Lecture 8B Frequency Response
Stability of computer network for the set delay Jolanta Tańcula.
ANGLE MODULATION AND DEMODULATION
MECHATRONICS Lecture 13 Slovak University of Technology Faculty of Material Science and Technology in Trnava.
System identification of the brake setup in the TU Delft Vehicle Test Lab (VTL) Jean-Paul Busselaar MSc. thesis.
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
February 24, Final Presentation AAE Final Presentation Backstepping Based Flight Control Asif Hossain.
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
Control Systems and Adaptive Process. Design, and control methods and strategies 1.
ECE Introduction to Control Systems -
TWO DEGREE OF FREEDOM SYSTEM. INTRODUCTION Systems that require two independent coordinates to describe their motion; Two masses in the system X two possible.
Chapter 5 BJT Circuits Dr.Debashis De Associate Professor West Bengal University of Technology.
The tendency to reduce the cost of CVGs results in metallic resonator. In comparison to quartz resonator CVG, it has much lower Q-factor and, as a result,
Autumn 2008 EEE8013 Revision lecture 1 Ordinary Differential Equations.
Dynamic Modeling PDR 17 October, 2000 Keith R. Hout Patrick Dempsey Bridget Fitzpatrick Heather Garber J.S. Mok.
In Engineering --- Designing a Pneumatic Pump Introduction System characterization Model development –Models 1, 2, 3, 4, 5 & 6 Model analysis –Time domain.
Automatic Control Theory-
Transfer Functions Chapter 4
Book Adaptive control -astrom and witten mark
1 Passive components and circuits - CCP Lecture 4.
DYNAMIC BEHAVIOR AND STABILITY OF CLOSED-LOOP CONTROL SYSTEMS
Mathematical Modelling of Dynamically Positioned Marine Vessels
Chapter 4. Angle Modulation. 4.7 Generation of FM Waves Direct Method –A sinusoidal oscillator, with one of the reactive elements in the tank circuit.
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Transfer Functions.
Chapter 4 Transfer Function and Block Diagram Operations § 4.1 Linear Time-Invariant Systems § 4.2 Transfer Function and Dynamic Systems § 4.3 Transfer.
Vibrationdata 1 Unit 15 SDOF Response to Base Input in the Frequency Domain.
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Chapter 4. Modelling and Analysis for Process Control
State Space Control of a Magnetic Suspension System Margaret Glavin Supervisor: Prof. Gerard Hurley.
1 Chapter 11 Compensator Design When the full state is not available for feedback, we utilize an observer. The observer design process is described and.
Kinematics. The function of a robot is to manipulate objects in its workspace. To manipulate objects means to cause them to move in a desired way (as.
Subsea Control and Communications Systems
Lecture 6: Time Response 1.Time response determination Review of differential equation approach Introduce transfer function approach 2.MATLAB commands.
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
G(s) Input (sinusoid) Time Output Ti me InputOutput A linear, time-invariant single input and single output (SISO) system. The input to this system is.
Lecture 14: Pole placement (Regulator Problem) 1.
(COEN507) LECTURE III SLIDES By M. Abdullahi
ERT 210/4 Process Control & Dynamics DYNAMIC BEHAVIOR OF PROCESSES :
TRANSFER FUNCTION Prepared by Mrs. AZDUWIN KHASRI.
Intelligent Robot Lab Pusan National University Intelligent Robot Lab Chapter 7. Forced Response Errors Pusan National University Intelligent Robot Laboratory.
Modern Control TheoryLecture 1, written by Xiaodong Zhao1 Modern Control Theory Syllabus Course Coordinator: Dr. Xiaodong Zhao – Room: Building Lab 2,
Lecture 7/8 Analysis in the time domain (II) North China Electric Power University Sun Hairong.
Dr.Mohammed abdulrazzaq
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
Control System Instrumentation
Chapter 1: Overview of Control
Automatic Control Theory CSE 322
Automatic control systems I. Nonlinearities in Control System
Advanced Control Systems (ACS)
Transfer Functions Chapter 4
Office Room: H116 Lab. : H830-1 Telephone: 4100
OSE801 Engineering System Identification Spring 2010
Radar Micro-Doppler Analysis and Rotation Parameter Estimation for Rigid Targets with Complicated Micro-Motions Peng Lei, Jun Wang, Jinping Sun Beijing.
CHAPTER VI BLOCK DIAGRAMS AND LINEARIZATION
LOCATION AND IDENTIFICATION OF DAMPING PARAMETERS
Modern Control Systems (MCS)
Digital Control Systems (DCS)
Chapter4 Bandpass Signalling Bandpass Filtering and Linear Distortion
Digital Control Systems (DCS)
G1 and G2 are transfer functions and independent of the
Digital and Non-Linear Control
Chapter 3 Modeling in the Time Domain
G1 and G2 are transfer functions and independent of the
Presentation transcript:

Самарский государственный аэрокосмический университет имени академика С. П. Королева 1 I. E. DAVYDOV Modern Methods of Rockets Stability and Controllability Estimation RUSSIAN MINISTRY OF EDUCATION AND SCIENCE SAMARA STATE AEROSPACE UNIVERSITY I. E. DAVYDOV Modern Methods of Rockets Stability and Controllability Estimation Samara 2015

Самарский государственный аэрокосмический университет имени академика С. П. Королева 2 Module 1. Dynamic Characteristics of Carrier Rocket Module 2. General Ideas of Automatic Control Theory Module 3. Stability Criteria of Linear Automatic Control Systems Module 4. Quality of Control Process Module 5. Non-linear Automatic Control Systems TRAINING PLAN: Module 1. Dynamic Characteristics of Carrier Rocket Module 2. General Ideas of Automatic Control Theory Module 3. Stability Criteria of Linear Automatic Control Systems Module 4. Quality of Control Process Module 5. Non-linear Automatic Control Systems

Самарский государственный аэрокосмический университет имени академика С. П. Королева 3 Module 1. Dynamic Characteristics of Carrier Rocket Picture 1.1., 1.2 – Speed and principal coordinate systems The system of equations:

Самарский государственный аэрокосмический университет имени академика С. П. Королева 4 Equations of disturbed motion are written in matrix form: Module 1. Dynamic Characteristics of Carrier Rocket X – column vector (n  1) X – column vector (n  1) of system status with components:  coefficient’s matrices of equations of disturbed motion sized (n  n) (n=3+m+h); F – column vector of disturbances sized (n  1);

Самарский государственный аэрокосмический университет имени академика С. П. Королева 5 Module 2. General Ideas of Automatic Control Theory Picture 2.1 — Simplified analysis plan of CR disturbed motion in heel channel Where: γ - heel angle; γпр – programmed value of heel angle; Оxyz – undisturbed principal coordinate system; - disturbed principal coordinate system; 1 – pitch gyro (AT – angle transmitter) ; 2 – servodrive amplifier; 3 – actuator; 4 – transfer function of controlled object (CO) which describe CR movement in heel channel; 5 – angular speed sensor (ASS). Carrier Rocket (CR) ACS in Heel Channel

Самарский государственный аэрокосмический университет имени академика С. П. Королева 6 Module 2. General Ideas of Automatic Control Theory ACS Classification: Example of disturbed and undisturbed movement of SpCr :

Самарский государственный аэрокосмический университет имени академика С. П. Королева 7 Module 3. Stability Criteria of Linear Automatic Control Systems - Vyshnegradsky stability criterion. - Algebraic stability criteria (Gurwits, Gauss). - Frequency stability criteria (Michailov, Naichlist). Mikhailov Curve: The change of amplitude of vector jω - pk because of frequency growth ω from -∞ to +∞

Самарский государственный аэрокосмический университет имени академика С. П. Королева 8 Module 3. Stability Criteria of Linear Automatic Control Systems Modal Forming Method of Dynamic System Properties where Ds- location area on plane of complex variable S spectrums of systems assemblage; pj – elements k - project (forming) system parameters vectors; Pf – multitude of possible project parameters; P – multitude of system project parameters. In general linear stationary object ‘CR-SD’ is described by equations in vector-matrix form:

Самарский государственный аэрокосмический университет имени академика С. П. Королева 9 Module 3. Stability Criteria of Linear Automatic Control Systems Modal Forming Method of Dynamic System Properties Operator L acting on any matrix A s, chosen from, transfers its spectrum to points multitude contained in where 0 – zero matrix.

Самарский государственный аэрокосмический университет имени академика С. П. Королева 10 Module 3. Stability Criteria of Linear Automatic Control Systems Modal Forming Method of Dynamic System Properties

Самарский государственный аэрокосмический университет имени академика С. П. Королева 11 Module 4. Quality of Control Process Structural plan of the system Contents of calculating-graphic work: 1. Work topic. 2. Purpose of the work. 3. Structural plan of automatic system with values. 4. Original system transformation to single circuit and defining transfer function of an open and close system. 5. Defining characteristic polynomial of a close system. 6. Defining system stability by: - algebraic Gurwits stability criterion; - particular Mikhailov stability criterion. 7. Conclusions for fulfilled work.

Самарский государственный аэрокосмический университет имени академика С. П. Королева 12 Module 4. Quality of Control Process Structural plan of the system Dynamic links parameters: Variant number Coefficients k1k1 T2T2 k4k4 T4T4 k5k5 T5T5 C5C

Самарский государственный аэрокосмический университет имени академика С. П. Королева 13 Module 4. Quality of Control Process Structural plan of the system Mikhailov curve

Самарский государственный аэрокосмический университет имени академика С. П. Королева 14 Module 5. Non-linear Automatic Control Systems Structural diagram of a nonlinear system 1 - the servo drive amplifier described by equation of aperiodic link; 2 - nonlinearity of the "dead zone" type with current saturation due to power limitation; 3 - speed characteristic of the servo unit; 4 - non-linear element of the saturation zone type in respect of deviation of the servo unites due to design features. K  angular transfer function ratio; Ky  overall gain; а 4  saturation of speed characteristic; Wрн (р)  SR angular transfer function; Kw  attitude rate transfer function ratio.

Самарский государственный аэрокосмический университет имени академика С. П. Королева 15 Module 5. Non-linear Automatic Control Systems Structural diagram of a nonlinear system Problem 1. In accordance with diagram: - Get transfer function of the control actuator. - Get AS pitch angle equation. Assume that the nonlinear link 3 has a slope of К рм.

Самарский государственный аэрокосмический университет имени академика С. П. Королева 16 Module 5. Non-linear Automatic Control Systems Structural diagram of a nonlinear system Problem 2. Diagram describes link 3 by the function:  nonlinear link., where А and   are respectively the amplitude and frequency of self-oscillation at the inlet of the nonlinear link. Than, for the given link we have at the output where q(A)  harmonic linearization of the nonlinear link. Take the equation of attitude (angular) motion by the pitch plane as: Get:- - the transfer function of the linear part and nonlinear link. - Determine the amplitude and frequency of self-oscillations.

Самарский государственный аэрокосмический университет имени академика С. П. Королева 17 Module 5. Non-linear Automatic Control Systems Structural diagram of a nonlinear system Problem 3. High-frequency interference with the frequency  (t) and amplitude В (f = B Sin  t) enters to the input of the measuring device (gyro). Equation of measuring device to be represented in the form (blocks 1, 5): The amplitude of the high-frequency forced oscillations at the input of servo unit is determined by the formula: Assess vibration noise immunity applying the methodology of calculation of the stability areas by the modal method of forming design parameters of the dynamic system (in this case, the AC parameters).

Самарский государственный аэрокосмический университет имени академика С. П. Королева 18 Final attestation Modern Methods of Rockets Stability and Controllability Estimation