The SIEVERT system: taking into account GCR and SPE effects aboard aircraft N. Fuller a, P. Lantos a and J.F. Bottollier-Depois b Recently, the European.

Slides:



Advertisements
Similar presentations
How Well Forecast Were the 2004 and 2005 Atlantic and U. S
Advertisements

High Resolution studies
Ex Diversion Ex Diversion.
Adders Used to perform addition, subtraction, multiplication, and division (sometimes) Half-adder adds rightmost (least significant) bit Full-adder.
© Oxford University Press 2009 Quit Part 7 Global warmingAre humans responsible? 7.2What is the normal global distribution global distribution pattern.
Effective Change Detection Using Sampling Junghoo John Cho Alexandros Ntoulas UCLA.
Performance Review Commission, and performance management of the European ATM system Keith C. Williams, Chairman PRC.
1 Performance indicators, targets, steering Technical Interchange meeting Toulouse, May 2002 Xavier FRON Head Performance Review Unit.
THE EXTERNAL HAZARD.
1 Making Changes to Existing Name and Work/Expression Authority Records Module 7. Making Changes to Existing Name and Work/Expression Authority Records.
SURVIVAL AND LIFE TABLES
Chapter 4: Basic Estimation Techniques
WESPAC 06 K. Wirth 1 Community Response to Aircraft Noise Exposure over Time Katja Wirth Kumamoto University, Japan Mark Brink & Christoph Schierz ETH.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I – slide 1 of 20 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Sessions 1-2Heavy Particles Session I
1 Lufthansa German Airlines Our commitment in reducing climate impact and supporting climate research Dr. Andreas Waibel Milano COP 9 – Climate Change.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Mapping Our World Cartography What is the equator? Latitude
Investigation of daily variations of cosmic ray fluxes in the beginning of 24 th solar activity cycle Ashot Chilingarian, Bagrat Mailyan IHY-ISWI Regional.
23 rd ECRS The stratospheric polar vortex as a cause for the temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere.
Study of Galactic Cosmic Rays at high cut- off rigidity during solar cycle 23 Partha Chowdhury 1 and B.N. Dwivedi 2 1 Department of Physics, University.
1 The QinetiQ Atmospheric Radiation Model and Solar Particle Events Clive Dyer, Fan Lei, Alex Hands, Peter Truscott Space Division QinetiQ, Farnborough,
Regression Analysis Using Excel. Econometrics Econometrics is simply the statistical analysis of economic phenomena Here, we just summarize some of the.
Paul Evenson, Waraporn Nuntiyakul,
Radiation Exposure, Dose and Relative Biological Effectiveness in Medicine Background Image:
Space radiation dosimetry and the fluorescent nuclear track detector Nakahiro Yasuda National Institute of Radiological Sciences.
IAEA Sources of Radiation Natural Radiation - Cosmic Radiation Day 3 – Lecture 8 1.
Solar Energetic Particles -acceleration and observations- (Two approaches at the highest energy) Takashi SAKO Solar-Terrestrial Environment Laboratory,
Vladimir Liberzon Oksana Sakhraui Victoria Shavirina Spider Management Technologies, Moscow, Russia
Radiation conditions during the GAMMA-400 observations:
Variations of the high energy muon flux and space-time structure of the temperature profile in the atmosphere M.G. Kostyuk 1, V.B. Petkov 1, R.V. Novoseltseva.
New results for Radiation Effects on the Human Health Obtained during the COST-724 Action F. Spurný a, Ts. Dachev b, a Nuclear Physics Institute, Czech.
Information session on aircrew exposure to cosmic radiation – Brussels – 20/01/2009 S. Pepin (Federal Agency for Nuclear Control) Belgian regulations with.
Ground Level Enhancement of May 17, 2012 Observed at South Pole SH21A-2183 Takao Kuwabara 1,3 ; John Bieber 1 ; John Clem 1,3 ; Paul Evenson 1,3 ; Tom.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
System for Radiation Environment characterization (fluxes, doses, dose equivalents at Earth, Moon and Mars) on hourly thru yearly time frame Example: Snapshots.
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
INTERNATIONAL STANDARDIZATION ORGANIZATION TECHNICAL SPECIFICATION Space Environment (Natural and Artificial) Probabilistic model of fluences and.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
INTRODUCTION M. Sonck (Federal Agency for Nuclear Control) Information session on aircrew exposure to cosmic radiation – Brussels – 20/01/2009.
Cosmic-Ray Induced Neutrons: Recent Results from the Atmospheric Ionizing Radiation Measurements Aboard an ER-2 Airplane P. Goldhagen 1, J.M. Clem 2, J.W.
1 Observations of Charge Sign Dependence in Solar Modulation Kiruna 2011 LEE Low Energy Electrons P.I.C. June 30, 2010 John Clem and Paul Evenson.
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
1 Atmospheric variations as observed by the BUST Barometric effect M.Berkova, V.Yanke, L.Dorman, V.Petkov, M.Kostyuk, R.Novoseltseva, Yu.Novoseltsev, P.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
27-Day Variations Of The Galactic Cosmic Ray Intensity And Anisotropy In Different Solar Magnetic Cycles ( ) M.V. Alania, A. Gil, K. Iskra, R.
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
Cosmic Rays2 The Origin of Cosmic Rays and Geomagnetic Effects.
Air Crew Hazards and Safety: FAA Uses of Neutron Monitor Data in Aviation Radiation Safety Presented by Kyle A. Copeland, Ph.D Neutron Monitor Community.
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Athens University – Faculty of Physics Section of Nuclear and Particle Physics Athens Neutron Monitor Station Study of the ground level enhancement of.
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
16-20 Oct 2005SSPVSE Conference1 Galactic Cosmic Ray Composition, Spectra, and Time Variations Mark E. Wiedenbeck Jet Propulsion Laboratory, California.
The objective of the CRONUS-Earth Project is to simultaneously address the various uncertainties affecting the production and accumulation of in-situ cosmogenic.
Full Design. DESIGN CONCEPTS The main idea behind this design was to create an architecture capable of performing run-time load balancing in order to.
Overview on cosmic radiation at aircraft altitudes Marcin Latocha, Peter Beck, Sofia Rollet, Michael Wind, Andrea Zechner AIT – Austrian Institute of Technology.
The Real-Time Neutron Monitor Database Christian T. Steigies (2), Karl-Ludwig Klein & Nicolas Fuller (1), on behalf of the NMDB team (1) Christian-Albrechts.
Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements[1]
Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements.
of occupational exposure
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
Early Alert of Solar Radiation Hazard
Development of a GLE Alarm System Based Upon Neutron Monitors
Alexander Mishev and Ilya Usoskin
Alexander Mishev & Ilya Usoskin
Application of neutron monitor data for space weather
Application of neutron monitor data for assessment of aircrew exposure
A. Mishev, I.Usoskin, S. Tuohino & A. Ibragimov
Presentation transcript:

The SIEVERT system: taking into account GCR and SPE effects aboard aircraft N. Fuller a, P. Lantos a and J.F. Bottollier-Depois b Recently, the European Commission (EU directive 96/29/EURATOM) included the exposure of aircraft crew to cosmic radiation as occupational exposure. It was following the recommendations of the International Commission on Radiological Protection (ICRP, 1991) concerning the exposure to enhanced or elevated levels of radiation from natural sources. The effective dose should not be higher than 100 mSv over 5 years with a maximum of 50 mSv for a given year (specific rules apply to pregnant air crew). The radiation doses onboard aircraft are due to two sources: Galactic Cosmic Rays (GCR) and Solar Proton Events (SPE). The doses are the result of the numerous secondary particles created in the atmosphere by high energy primary particles. The galactic component is permanent but modulated by the solar activity in the course of the 11-year solar cycle. The modulation parameter is an input of models such as EPCARD (Schraube, 1999) which computes the dose for GCR at any point in space up to an altitude of 80,000 feet. The SPE, when detected at ground level by neutron monitors (GLE), may enhance significantly the doses received onboard aircraft. A specific semi- empirical model named SiGLE was developed (Lantos & Fuller, 2003) to take into account these events. Using EPCARD and SiGLE, the computerized system for flight assessment of exposure to cosmic radiation in air transport, or SIEVERT (Bottollier-Depois, 2003), is proposed to airline companies for assisting them in the application of this new legal requirement. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN) and Paris Observatory. This professional service is accessible to airlines but also to a larger public via the internet site which allows any passenger to get an estimate of the dose received during a given flight. The IRSN updates the map of the dose rates every month by taking solar activity into account. A map of the hourly dose at a typical subsonic altitude is given as an example for January In the case of a GLE, a specific map is created (see below). In addition, regular radiation measurements, from dosimeters installed on the ground and on aircraft, are used to confirm and, if necessary, to correct the obtained values. The company prepares a file of completed or scheduled flights, and sends it to the SIEVERT Internet address. The system then completes the file by adding the effective dose that corresponds to each flight. Doses are calculated according to flight characteristics, using the dosimetric input data validated by the IRSN. It is asked to airlines to described a flight using way points. If the information is minimal (like information available on flight ticket), the dose value is assessed using a standard route profile. The data, at this stage, are anonymous. Airlines are in charge to add up the doses received during flights carried out by each member of the flight personnel. The SIEVERT principle Airspace is divided into cells. Each one is 1000 feet in altitude, 10° in longitude and 2° in latitude. Altogether they form a map of 265,000 cells; to each of these cells is assigned an effective dose rate value. The time spent by the plane on each cell and the corresponding dose are calculated; their accumulative total gives the dose received during the flight. Validation Results show that a monthly cartography based on the average intensity measured with a neutron monitor is sufficient to achieve a precision of about 20 % on effective dose calculation, for each flight. This study also pointed the importance of using the detailed flight plan of each flight to achieve sufficient precision. Indeed, on a subsonic route like Paris- Washington, two flights, operated on the same month, with the same aircraft, on the same route and direction could exhibit a relative variation of more than 50 %. Application to past and last GLE The bar plot below summarises the effective doses received for two routes during 31 GLEs (over 67 observed until 2004), the others giving negligible radiation effect. To each GLE correspond four bars. The first (in black) is the contribution to effective dose of the GLE itself for Paris-New York flight on-board Concorde. The second (in white) is the total effective dose taking into account GCR contribution too, calculated for the month of the event. The two last bars are the same but for Paris-San Francisco subsonic flight. All calculations correspond to the worse case in terms of departure time. It should be noted that the lower protection at supersonic altitude is counterbalanced by the flight durations which are quite different: 11 h 24 m for subsonic flights instead of 3½ h for Concorde. This explains the rather small difference observed between black bars for a given GLE. According to these results, over the 67 GLEs observed since 1942, only 18 are to be included in operational dose calculations, if we consider that the GLEs below 30 µSv could be neglected (this limit is representative of the lower limit of the effective dose received from GCR during a typical intercontinental journey). The GLE 68 of the 20 January 2005 showed a very important North-South anisotropy above 65 ° in geomagnetic latitude. It was measured at an intensity of % with Kerguelen NM, 3308 % with Terre Adélie NM and 2091 % with McMurdo NM (with 5 minute counts). In the North hemisphere, at about the same geomagnetic latitudes, the intensity is only 277% for Inuvik (Canada) NM, 114 % for Thule (Greenland) NM and 112 % for Barentsburg (Spitzberg) NM. It thus appears as one of the strongest GLEs observed during the last fifty years. The following table gives doses received from GLE 68 and from galactic cosmic rays for a few typical flights. The flights are based on actual flight plans and doses are calculated with the SiGLE model. The doses received from galactic cosmic rays (GCR) are calculated with CARI 6 software. Doses obtained from measurements by IRSN between 1996 and The circles contain the average dose equivalent rate on the flight in µSv/h, and the radiation mean quality factor. The total dose equivalent (mean rate x time) is given for a round-trip flight. History of significant GLEs in term of dose since 1942 for a supersonic and a subsonic flight (see text for full description) Principles of data exchange between SIEVERT and airline companies. Dose calculation principle with SIEVERT Conclusion SIEVERT provides a correct application of the regulation for at least three reasons. First, the results obtained are close enough to reality to avoid under-estimating the doses received by the personnel. Second, the radiation dose assessment mode is the same for all airlines. Third, if checks become required in the future, retrospective dose calculations might always be performed. A pioneering aspect of SIEVERT lies in the fact that it takes both potential radiation sources into account, GCR and SPE, using two efficient tools, EPCARD and SiGLE, which have been tested and validated. The system is used in routine at a national level since About 70,000 flights per month are proceeded by the overall French airlines. The SiGLE principle The semi-empirical model SiGLE combines few available measurements obtained on board Concorde during GLEs in 1989 and 2000 and on board a subsonic flight during a GLE in 2001, with calculations based on particle transport codes for GLE 42 on 29 September 1989, to compute an estimate of the dose D(t) received during GLEs. D(t) = A(z, ) x L( G ) x C( ) x I(t) From the Air France and British Airways Concorde measurements, a linear relationship C(g) between ground based neutron monitor GLE time profiles and dose rates at in altitude is derived for different particle rigidity spectral exponents (noted γ). The rigidity spectrum exponent is deduced from the ratio between two neutron monitors (Webber &Quenby, 1959 ; Lantos, 2005) when an complete calculation is not available (recent GLEs for example). The measurement on board a Czech Airlines flight from Prague-to New York (Spurný & Dachev, 2001), during the GLE numbered 60, on 15 April 2001, as well as plots based on theoretical calculations by OBrien et al. (1998), are used to derive the attenuation factor A(z,g) between dose rate at feet in altitude and dose rate at the aeroplane altitude, noted z. Because the available flights of Concorde were restricted to routes between New York (geomagnetic latitude λ G = 50.7°N) and Paris (λ G = 51.1°N) or London (λ G = 53.7°N), the computed doses are valid for the North Atlantic path. L(λ G ) function, giving the variation of the dose rate with the geomagnetic latitude at subsonic altitudes, is estimated using results of dose rate calculation during GLE 42 (OBrien & Sauer, 2000) for Greenwich meridian. Then, from the results on North Atlantic path, the dose rates are deduced for other geomagnetic latitudes. The reference monitor for the model is Kerguelen Islands, in South Indian Ocean. It is located at Port-aux-Français (λ G = 57.5°S and vertical cut- off rigidity of 1.1 GV). It is operated by the French Institute for Polar Research (IPEV) Logarithm of the attenuation of dose equivalent rate in function of altitude for different values of the rigidity spectrum exponent g. Attenuation for galactic cosmic rays is indicated with dashed line and attenuation for GLEs with average rigidity spectrum exponent g = is indicated with a dotted line. Dose equivalent rate coefficient L in function of the geomagnetic latitude for subsonic altitude feet. The reference latitude corresponds to North Atlantic routes. Lower axis gives corresponding vertical cut-off rigidity for northern hemisphere and European sector (epoch 1995). The flights from Paris to San Francisco and the flight from Tokyo to Paris along polar route are specifically corrected from the anisotropy mentioned above (SiGLE gives respectively 96.9 µSv and 88.3 µSv without correction). The world map gives an example, at subsonic altitude, of the hourly dose computed with SiGLE at the time of the maximum of the GLE (GLE + GCR). a Paris Observatory, Meudon, FRANCE b IRSN, B.P. 17, Fontenay-aux-Roses, FRANCE