QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.

Slides:



Advertisements
Similar presentations
A method of finding the critical point in finite density QCD
Advertisements

2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea),
Lattice QCD (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
Thermal phenomenological AdS/QCD 1. Thermal AdS/QCD 2. In-medium parameters 3. Chiral phase transition 4. Coupling constants Y. Kim (KIAS) with S.-J. Sin,
QCD thermodynamic on the lattice and the hadron resonance gas Péter Petreczky Physics Department and RIKEN-BNL ECT*/LOEWE/NIKHEF/CATHIE workshop, Trento,
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Determination of QCD phase diagram from regions with no sign problem Yahiro ( Kyushu University ) Collaborators: Y. Sakai, T. Sasaki and H. Kouno.
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
Free Quarks and Antiquarks versus Hadronic Matter Xiao-Ming Xu Collaborator: Ru Peng.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Kenji Morita 21 May 2011Three Days on Quarkyonic Poland1 Probing deconfinement in a chiral effective model with Polyakov loop from imaginary.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Lecture 5-6: Chiral and deconfinement transition in QCD and the properties of matter at low and high temperatures Effective field theory approach Effective.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
The J/  as a probe of Quark-Gluon Plasma Erice 2004 Luciano MAIANI Università di Roma “La Sapienza”. INFN. Roma.
Imaginary Chemical potential and Determination of QCD phase diagram
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Probing QCD Phase Diagram with Fluctuations of conserved charges Krzysztof Redlich University of Wroclaw & EMMI/GSI QCD phase boundary and its O(4) „scaling”
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
KHALED TEILAB IN COLLABORATION WITH SUSANNA GALLAS, FRANCESCO GIACOSA AND DIRK H. RISCHKE Meson production in proton-proton scattering within an eLSM.
1 Chemical freezeout curve from heavy ion data coincides with freezeout T at RHIC and SPC J. Stachel & P. Braun- Munzinger.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
1 Nontopological Soliton in the Polyakov Quark Meson Model Hong Mao ( 毛鸿 ) Department of Physics, Hangzhou Normal University With: Jinshuang Jin ( HZNU.
1 Meson mass in nuclear medium Su Houng Lee Thanks to: Hatsuda + former collaborators + and to Kenji Morita(GSI) and Taesoo Song(A&M) 1.Phase transition,
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
ATHIC 2008, Tsukuba Kenji Morita, Yonsei University Charmonium dissociation temperatures from QCD sum rules Kenji Morita Institute of Physics and Applied.
Basic hadronic SU(3) model generating a critical end point in a hadronic model revisited including quark degrees of freedom phase diagram – the QH model.
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
Lattice QCD at finite temperature Péter Petreczky
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
Deconfinement and Equation of State in QCD
Raju Venugopalan Brookhaven National Laboratory
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
A novel probe of Chiral restoration in nuclear medium
Continuum threshold and Polyakov loop as deconfinement order parameters. M. Loewe, Pontificia Universidad Católica de Chile (PUC) and CCTVAL, Valparaíso.
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES
Towards Understanding the In-medium φ Meson with Finite Momentum
A possible approach to the CEP location
Theory on Hadrons in nuclear medium
Presentation transcript:

QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E. Gutiérrez, M. Loewe, and A. Raya) arXiv: [hep-ph]

Outline Deconfinement and chiral symmetry restoration Resonance threshold energy as phenomenological tool to study deconfinement QCD sum rules at finite temperature/chemical potential Results

Deconfinement and chiral symmetry restoration Driven by same effect: With increasing density, confining interaction gets screened and eventually becomes less effective (Deconfinement) Inside a hadron, quark mass generated by confining interaction. When deconfinement occurres, generated mass is lost (chiral transition)

Critical end point?

Lattice quark condensate and Polyakov loop A. Bazavov et al., Phys. Rev. D 90, (2009)

Status of phase diagram  =0: Physical quark masses, deconfinement and chiral symmetry restoration coincide. Smooth crossover for 170 MeV < T c < 200 MeV Analysis tools: – Lattice (not applicable at finite  ) – Models (Polyakov loop, quark condesate) Lattice vs. Models: – Lattices gives: smaller/larger chemical potential/temperature values for endpoint than models Critical end point might not even exist!

Alternative signature: Melting of resonances s Im  s0s0 pole For increasing T and/or  B the energy threshold for the continuum goes to 0

Correlator of axial currents

Quark – hadron duality Operator product expansion Finite energy sum rules

Non-pert part: dispersion relations

Pert part: imaginary parts at finite T and  Two contributions: 1)Annihilation channel (available also at T=  =0) 2)Dispersion channel (Landau damping)

Imaginary parts at finite T and  Annihilation term Dispersion term Pion pole

Threshold s 0 at finite T and  GMOR N=1, C 2 = 0 2 Need quark condensate at finite T and 

quark condensate T,   0 Poisson summation formula quark condensate

Parameters fixed by requiring S-D conditions and description of lattice data Lose of Lorentz covariance means that Parametrize S-D solution in terms of “free-like” propagators A. Bazavov et al., Phys. Rev. D 90, (2009)

Representation makes it easy to carry out integration 2 8 _

Susceptibilities

QCD Phase Diagram

Summary and conclusions QCD phase diagram rich in structure: critical end point? Polyakov loop, quark condensate analysis can be supplemented with other signals: look at threshold s 0 as function of T and  Finite energy QCD sum rules provide ideal framework. Need calculation of quark condesnate. Use S-D quark propagator parametrized with “free- like” structures. Transition temperatures coincide, method not accurate enough to find critical point, stay tuned.