1 Chapter 7 Portfolio Theory and Other Asset Pricing Models.

Slides:



Advertisements
Similar presentations
7 - 1 Copyright © 2002 Harcourt, Inc.All rights reserved. CHAPTER 7 Risk and Return: Portfolio Theory and Asset Pricing Models Capital Asset Pricing Model.
Advertisements

MBA & MBA – Banking and Finance (Term-IV) Course : Security Analysis and Portfolio Management Unit III: Asset Pricing Theories.
An Introduction to Asset Pricing Models
FIN352 Vicentiu Covrig 1 Asset Pricing Models (chapter 9)
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Return, Risk, and the Security Market Line Chapter Thirteen.
Chapter 9 Capital Market Theory.
Risk and Rates of Return
INVESTMENT PLANNING LECTURE 17: CAPM & OTHER MODELS MARCH 16, 2015 Vandana Srivastava.
Risk and Rates of Return
Efficient Diversification
CHAPTER 5 Risk and Rates of Return
5 - 1 CHAPTER 5 Risk and Return: Portfolio Theory and Asset Pricing Models Portfolio Theory Capital Asset Pricing Model (CAPM) Efficient frontier Capital.
Capital Asset Pricing and Arbitrary Pricing Theory
1 CHAPTER 2 Risk and Return: Part I. 2 Topics in Chapter Basic return concepts Basic risk concepts Stand-alone risk Portfolio (market) risk Risk and return:
7-1 McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. CHAPTER 7 Capital Asset Pricing Model.
Chapter 5 Risk and Rates of Return © 2005 Thomson/South-Western.
Defining and Measuring Risk
© K. Cuthbertson and D. Nitzsche Figures for Chapter 5 Mean-Variance Portfolio Theory and CAPM (Quantitative Financial Economics)
FIN639 Vicentiu Covrig 1 Asset Pricing Theory (chapter 5)
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
2 - 1 Copyright © 2002 by Harcourt College Publishers. All rights reserved. CHAPTER 2 Risk and Return: Part I Basic return concepts Basic risk concepts.
Chapter 13. Risk & Return in Asset Pricing Models Portfolio Theory Managing Risk Asset Pricing Models Portfolio Theory Managing Risk Asset Pricing Models.
CHAPTER 8 Risk and Rates of Return
AN INTRODUCTION TO ASSET PRICING MODELS
Financial Management Lecture No. 27
5-1 CHAPTER 8 Risk and Rates of Return Outline Stand-alone return and risk Return Expected return Stand-alone risk Portfolio return and risk Portfolio.
11-1 Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Fourth Edition 1 Chapter 7 Capital Asset Pricing.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
1 Chapter 7 Portfolio Theory and Other Asset Pricing Models.
CHAPTER 5 Risk and Return: Portfolio Theory and Asset Pricing Models
CHAPTER 5: Risk and Return: Portfolio Theory and Asset Pricing Models
1 Chapter 2: Risk & Return Topics Basic risk & return concepts Stand-alone risk Portfolio (market) risk Relationship between risk and return.
Arbitrage Pricing Theory and Multifactor Models of Risk and Return
Investments, 8 th edition Bodie, Kane and Marcus Slides by Susan Hine McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights.
Chapter 13 CAPM and APT Investments
Capital Market Theory Chapter 20 Jones, Investments: Analysis and Management.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 21 A Basic Look at Portfolio Management and Capital.
Risk and Return: The Basics  Stand-alone risk  Portfolio risk  Risk and return: CAPM/SML.
Ch. Risk and Return:II. 1. Efficient portfolio Def: portfolios that provide the highest expected return for any degree of risk, or the lowest degree of.
Finance - Pedro Barroso
The Capital Asset Pricing Model
Risks and Rates of Return
Requests for permission to make copies of any part of the work should be mailed to: Thomson/South-Western 5191 Natorp Blvd. Mason, OH Chapter 11.
Return and Risk: The Capital-Asset Pricing Model (CAPM) Expected Returns (Single assets & Portfolios), Variance, Diversification, Efficient Set, Market.
Mean-variance Criterion 1 IInefficient portfolios- have lower return and higher risk.
© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible Web site, in whole or in part.
Chapter 06 Risk and Return. Value = FCF 1 FCF 2 FCF ∞ (1 + WACC) 1 (1 + WACC) ∞ (1 + WACC) 2 Free cash flow (FCF) Market interest rates Firm’s business.
Professor XXX Course Name / #
The Basics of Risk and Return Corporate Finance Dr. A. DeMaskey.
Return and Risk The Capital Asset Pricing Model (CAPM)
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
McGraw-Hill/Irwin Copyright © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
1 CHAPTER 6 Risk, Return, and the Capital Asset Pricing Model.
Asset Pricing Models Chapter 9
Asset Pricing Models Chapter 9
CHAPTER 3 Risk and Return: Part II
Chapter 11 Risk and Rates of Return. Defining and Measuring Risk Risk is the chance that an unexpected outcome will occur A probability distribution is.
Return and Risk: The Asset-Pricing Model: CAPM and APT.
U6-1 UNIT 6 Risk and Return and Stock Valuation Risk return tradeoff Diversifiable risk vs. market risk Risk and return: CAPM/SML Stock valuation: constant,
Capital Market Line Line from RF to L is capital market line (CML)
1 CHAPTER 6 Risk, Return, and the Capital Asset Pricing Model (CAPM)
1 EXAMPLE: PORTFOLIO RISK & RETURN. 2 PORTFOLIO RISK.
Portfolio risk and return
Chapter 9 Charles P. Jones, Investments: Analysis and Management, Twelfth Edition, John Wiley & Sons 9- 1 Capital Market Theory and Asset Pricing Models.
1 CAPM & APT. 2 Capital Market Theory: An Overview u Capital market theory extends portfolio theory and develops a model for pricing all risky assets.
Portfolio Theory, Asset Pricing Models, and Behavioral Finance
Investments: Analysis and Management
CHAPTER 5 Risk and Rates of Return
Presentation transcript:

1 Chapter 7 Portfolio Theory and Other Asset Pricing Models

2 Topics in Chapter Portfolio Theory Capital Asset Pricing Model (CAPM) Efficient Frontier Capital Market Line (CML) Security Market Line (SML) Beta calculation Arbitrage pricing theory Fama-French 3-factor model

3 Portfolio Theory Suppose Asset A has an expected return of 10 percent and a standard deviation of 20 percent. Asset B has an expected return of 16 percent and a standard deviation of 40 percent. If the correlation between A and B is 0.35, what are the expected return and standard deviation for a portfolio comprised of 30 percent Asset A and 70 percent Asset B?

4 Portfolio Expected Return r p = w A r A + (1 – w A ) r B ^^^ = 0.3(0.1) + 0.7(0.16) = = 14.2%.

5 Portfolio Standard Deviation σ P = √ w 2 A σ 2 A + (1-w A ) 2 σ 2 B + 2w A (1-w A )ρ AB σ A σ B = √ (0.2 2 ) (0.4 2 ) + 2(0.3)(0.7)(0.35)(0.2)(0.4) = 0.306

6 Attainable Portfolios: r AB = 0.35

7 Attainable Portfolios: r AB = +1  AB = +1.0: Attainable Set of Risk/Return Combinations 0% 5% 10% 15% 20% 0%10%20%30%40% Risk,  p Expected return

8 Attainable Portfolios: r AB = -1  AB = -1.0: Attainable Set of Risk/Return Combinations 0% 5% 10% 15% 20% 0%10%20%30%40% Risk,  p Expected return

9 Attainable Portfolios with Risk-Free Asset (Expected risk-free return = 5%)

10 Expected Portfolio Return, r p Risk,  p Efficient Set Feasible Set Feasible and Efficient Portfolios

11 Feasible and Efficient Portfolios The feasible set of portfolios represents all portfolios that can be constructed from a given set of stocks. An efficient portfolio is one that offers: the most return for a given amount of risk, or the least risk for a give amount of return. The collection of efficient portfolios is called the efficient set or efficient frontier.

12 IB2IB2 IB1IB1 IA2IA2 IA1IA1 Optimal Portfolio Investor A Optimal Portfolio Investor B Risk  p Expected Return, r p Optimal Portfolios

13 Indifference Curves Indifference curves reflect an investor’s attitude toward risk as reflected in his or her risk/return tradeoff function. They differ among investors because of differences in risk aversion. An investor’s optimal portfolio is defined by the tangency point between the efficient set and the investor’s indifference curve.

14 What is the CAPM? The CAPM is an equilibrium model that specifies the relationship between risk and required rate of return for assets held in well-diversified portfolios. It is based on the premise that only one factor affects risk. What is that factor?

15 What are the assumptions of the CAPM? Investors all think in terms of a single holding period. All investors have identical expectations. Investors can borrow or lend unlimited amounts at the risk-free rate. (More...)

16 Assumptions (Continued) All assets are perfectly divisible. There are no taxes and no transactions costs. All investors are price takers, that is, investors’ buying and selling won’t influence stock prices. Quantities of all assets are given and fixed.

17 What impact does r RF have on the efficient frontier? When a risk-free asset is added to the feasible set, investors can create portfolios that combine this asset with a portfolio of risky assets. The straight line connecting rRF with M, the tangency point between the line and the old efficient set, becomes the new efficient frontier.

18 M Z. A r RF MM Risk,  p The Capital Market Line (CML): New Efficient Set.. B rMrM ^ Expected Return, r p Efficient Set with a Risk-Free Asset

19 What is the Capital Market Line? The Capital Market Line (CML) is all linear combinations of the risk-free asset and Portfolio M. Portfolios below the CML are inferior. The CML defines the new efficient set. All investors will choose a portfolio on the CML.

20 r p =r RF + SlopeIntercept ^ p.p. r M - r RF ^ MM Risk measure The CML Equation

21 What does the CML tell us? The expected rate of return on any efficient portfolio is equal to the risk- free rate plus a risk premium. The optimal portfolio for any investor is the point of tangency between the CML and the investor’s indifference curves.

22 r RF MM Risk,  p I1I1 I2I2 CML R = Optimal Portfolio. R. M rRrR rMrM RR ^ ^ Expected Return, r p Capital Market Line

23 What is the Security Market Line (SML)? The CML gives the risk/return relationship for efficient portfolios. The Security Market Line (SML), also part of the CAPM, gives the risk/return relationship for individual stocks.

24 The SML Equation The measure of risk used in the SML is the beta coefficient of company i, b i. The SML equation: r i = r RF + (RP M ) b i

25 How are betas calculated? Run a regression line of past returns on Stock i versus returns on the market. The regression line is called the characteristic line. The slope coefficient of the characteristic line is defined as the beta coefficient.

26 Year r M r i 115% 18% riri _ rMrM _ r i = r M ^^ __ Illustration of beta calculation

27 (More...) Method of Calculation Analysts use a computer with statistical or spreadsheet software to perform the regression. At least 3 year’s of monthly returns or 1 year’s of weekly returns are used. Many analysts use 5 years of monthly returns.

28 If beta = 1.0, stock is average risk. If beta > 1.0, stock is riskier than average. If beta < 1.0, stock is less risky than average. Most stocks have betas in the range of 0.5 to 1.5.

29 Interpreting Regression Results The R 2 measures the percent of a stock’s variance that is explained by the market. The typical R 2 is: 0.3 for an individual stock over 0.9 for a well diversified portfolio

30 Interpreting Regression Results (Continued) The 95% confidence interval shows the range in which we are 95% sure that the true value of beta lies. The typical range is: from about 0.5 to 1.5 for an individual stock from about.92 to 1.08 for a well diversified portfolio

31  2 = b 2  2 +  e 2.  2 = variance = stand-alone risk of Stock j. b 2  2 = market risk of Stock j.  e 2 = variance of error term = diversifiable risk of Stock j. j j Mj j j j M What is the relationship between stand- alone, market, and diversifiable risk?

32 What are two potential tests that can be conducted to verify the CAPM? Beta stability tests Tests based on the slope of the SML

33 Tests of the SML indicate: A more-or-less linear relationship between realized returns and market risk. Slope is less than predicted. Irrelevance of diversifiable risk specified in the CAPM model can be questioned. (More...)

34 Betas of individual securities are not good estimators of future risk. Betas of portfolios of 10 or more randomly selected stocks are reasonably stable. Past portfolio betas are good estimates of future portfolio volatility.

35 Are there problems with the CAPM tests? Yes. Richard Roll questioned whether it was even conceptually possible to test the CAPM. Roll showed that it is virtually impossible to prove investors behave in accordance with CAPM theory.

36 What are our conclusions regarding the CAPM? It is impossible to verify. Recent studies have questioned its validity. Investors seem to be concerned with both market risk and stand-alone risk. Therefore, the SML may not produce a correct estimate of r i. (More...)

37 CAPM/SML concepts are based on expectations, yet betas are calculated using historical data. A company’s historical data may not reflect investors’ expectations about future riskiness. Other models are being developed that will one day replace the CAPM, but it still provides a good framework for thinking about risk and return.

38 What is the difference between the CAPM and the Arbitrage Pricing Theory (APT)? The CAPM is a single factor model. The APT proposes that the relationship between risk and return is more complex and may be due to multiple factors such as GDP growth, expected inflation, tax rate changes, and dividend yield.

39 r i = r RF + (r 1 - r RF )b i1 + (r 2 - r RF )b i (r j - r RF )b ij. b ij = sensitivity of Stock i to economic Factor j. r j = required rate of return on a portfolio sensitive only to economic Factor j. Required Return for Stock i under the APT

40 What is the status of the APT? The APT is being used for some real world applications. Its acceptance has been slow because the model does not specify what factors influence stock returns. More research on risk and return models is needed to find a model that is theoretically sound, empirically verified, and easy to use.

41 Fama-French 3-Factor Model Fama and French propose three factors: The excess market return, r M -r RF. the return on, S, a portfolio of small firms (where size is based on the market value of equity) minus the return on B, a portfolio of big firms. This return is called r SMB, for S minus B.

42 Fama-French 3-Factor Model (Continued) the return on, H, a portfolio of firms with high book-to-market ratios (using market equity and book equity) minus the return on L, a portfolio of firms with low book-to- market ratios. This return is called r HML, for H minus L.

43 r i = r RF + (r M - r RF )b i + (r SMB )c i + (r HMB )d i b i = sensitivity of Stock i to the market return. c j = sensitivity of Stock i to the size factor. d j = sensitivity of Stock i to the book- to-market factor. Required Return for Stock i under the Fama-French 3-Factor Model

44 Inputs: b i =0.9; r RF =6.8%; market risk premium = 6.3%; c i =-0.5; expected value for the size factor is 4%; d i =-0.3; expected value for the book-to- market factor is 5%. r i = r RF + (r M - r RF )b i + (r SMB )c i + (r HMB )d i r i = 6.8% + (6.3%)(0.9) + (4%)(-0.5) + (5%)(-0.3) = 8.97% Required Return for Stock i

45 CAPM: r i = r RF + (r M - r RF )b i r i = 6.8% + (6.3%)(0.9) = 12.47% Fama-French (previous slide): r i = 8.97% CAPM Required Return for Stock i