Liceo Scientifico Isaac Newton Roma Maths course Continuity Teacher Serenella Iacino X Y O c 1 f(c)

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
Our library has two forms of encyclopedias: Hard copy and electronic versions. The first is simply the old-fashioned "book on the shelf" type of encyclopedia.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
2010 fotografiert von Jürgen Roßberg © Fr 1 Sa 2 So 3 Mo 4 Di 5 Mi 6 Do 7 Fr 8 Sa 9 So 10 Mo 11 Di 12 Mi 13 Do 14 Fr 15 Sa 16 So 17 Mo 18 Di 19.
Richmond House, Liverpool (1) 26 th January 2004.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
ABC Technology Project
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
Green Eggs and Ham.
VOORBLAD.
15. Oktober Oktober Oktober 2012.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
Januar MDMDFSSMDMDFSSS
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Essential Cell Biology
How Cells Obtain Energy from Food
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
CpSc 3220 Designing a Database
Copyright © Cengage Learning. All rights reserved.
Traktor- og motorlære Kapitel 1 1 Kopiering forbudt.
Presentation transcript:

Liceo Scientifico Isaac Newton Roma Maths course Continuity Teacher Serenella Iacino X Y O c 1 f(c)

2 Definition a X Y O bC f(c)

3 Definition f(x) is defined in c so that f(c) exists x c lim f(x) = x c + - whenf(x) – f(c)< εx – c< δ lim f(x) exists, is finite and is equal to so that f(c)= which means that lim f(x) = f(c) Let f(x) be a function defined in a closed interval [a,b] and let c be a point belonging to this open interval

X f(c) 4 Y O c whenf(x) – f(c)< εx – c< δ

5 lim f(x) = f(c) x c - lim f(x) = f(c) x c + + lim f(x) = lim f(x) = f(c) x c - right-continuous left-continuous

6 f(c) doesnt exist x c + lim f(x) = x c - f(x) isnt continuos at the point c. X Y O c

f(x) isnt continuous at the point c. L = f(c) 7 if x = c g(x) L f(x) = X Y O c

f(x) is continuous at the point c. 8 x c lim f(x) = = f(c) X Y O = f(c) c

f(x) isnt continuous at the point c. 9 if x < c if x > c f(x) = 1 2 x c + lim f(x) = = lim f(x) = x c X Y O c 2 1

f(x) isnt continuous at the point c, but is only right-continuous. 10 if x < c if x > c g(x) L f(x) = x c + lim f(x) = = lim f(x) = x c - L X Y O c L = f(c)

if x < c if x > c f(x) isnt continuous at the point c, but is only left-continuous. if x = c 11 g(x) L f(x) = h(x) x c + lim f(x) = = lim f(x) = x c - LX Y O c L

f(x) isnt continuous at the point c, but is only right-continuous. 12 if x < c if x > c if x = c g(x) L f(x) = h(x) X Y O c L

All elementary functions are continuous functions, for example: 13 the logarithmic function the exponential functiony = sin x x y x y x y x y Parabola

14 f(x) + g(x) f(x) g(x) f(x) g(x) [f(x)] g(x) is still continuous In addition, if f(x) and g(x) are two continuous functions at the point c, then: f [ g (x) ]is still continuous

15 if 0 < x < 3 if 5 < x < 7 x 10-x f(x) = Y XO Inverse function

16 if 0 < x < 3 if 3 < x < 5 x 10-x f (x) = X Y O lim x = 3 = lim 10 – x = 7 + x 3 - Inverse function

17 Inverse function theorem Let I be a limited or unlimited interval and let f(x) be a function defined in I and here continuous. If f(x) is invertible then is continuous. f (x)

Bolzano theorem 18 b aC1 2C 3CX Y O Let f(x) be a function defined and continuous in a closed and limited interval [a, b]. If f(a) f(b) < 0 then theres a point c belonging to the open interval (a, b) such that f(c) = 0.

19 a X Y O b M m Let f(x) be a function defined and continuous in a closed interval [a, b]; then the function attains its Maximum and its minimum in [a, b]; so theres at least a point c belonging to this interval such that: f(x) f(c) or f(x) f(c) for all x belonging to the closed interval [a, b]. Weierstrass theorem

20 a X Y O b M m Weierstrass theorem

21 aX Y O b M m Weierstrass theorem

22 Intermediate value theorem Y y = k a X O b M mC1C2 Let f(x) be a continuous function in a closed and limited interval [a, b]; if m and M are its minimum and Maximum values in this interval, and if K is a number between m and M, then theres some number c in [a, b] such that f(c)=K

When the function f(x) isnt continuous at the point c, we say that f(x) has a discontinuity at that point. We can then distinguish three types of different discontinuities as follows: 1.Discontinuity of the first kind 2. Discontinuity of the second kind 3. Discontinuity of the third kind Discontinuity

1.Discontinuity of the first kind 24 X Y O c 1 2 x c + lim f(x) = and lim f(x) = x c jump of f(x) is jump discontinuity

25 2. Discontinuity of the second kind X Y O c x c + lim f(x) = + and lim f(x) = - x c -

26 X Y O c 2. Discontinuity of the second kind x c + lim f(x) = - and lim f(x) = x c - infinite discountinuity.

The point c is called a point of discontinuity of the third kind for f(x) in the following case: Discontinuity of the third kind X Y O c exists and is x c lim f(x) = finite but the function isnt defined at the point c 1)

finite but the value of the limit isnt equal to f(c) 28 X Y O c L = f(c) exists and is x c lim f(x) = 2) 3. Discontinuity of the third kind removable discontinuity.

29 Copyright 2012 © eni S.p.A.