Introduction to Nanomechanics (Spring 2012) Martino Poggio.

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

Participants: C-1:Cryogenic last-stage suspensions (interferometers) (F.Ricci-G.Frossati) Objectives: -Design new suspension elements for the last stage.
SIMPLIFIED MODELS OF ILD AND SID DETECTORS: SIMULATIONS AND SCALED TEST ULB: Christophe Collette, David Tschilumba, Lionel SLAC: Marco.
Takanori Sekiguchi Italy-Japan Workshop (19 April, 2013) Inverted Pendulum Control for KAGRA Seismic Attenuation System 1 D2, Institute for Cosmic Ray.
April 27th, 2006 Paola Puppo – INFN Roma ILIAS Cryogenic payloads and cooling systems (towards a third generation interferometer) part II: the Vibration.
Students: Young-Shin Park Scott Lacey Mark Kuzyk Laser Cooling of an Optomechanical Microresonator Hailin Wang Oregon Center for Optics, University of.
Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators CHEN, MU.
A spring with a mass of 6 kg has damping constant 33 and spring constant 234. Find the damping constant that would produce critical damping
Lab 5: Damped simple harmonic motion
Introduction to Nanomechanics (Fall 2010) Martino Poggio.
Introduction to Nanomechanics (Spring 2012) Martino Poggio.
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
Chapter 13 Oscillatory Motion.
Introduction to Nanomechanics (Spring 2012) Martino Poggio.
Introduction to seismic sensors (subject 3.2) Peter Novotny PACMAN meeting, CERN, 7 October 2014.
Introduction to Nanomechanics (Spring 2012) Martino Poggio.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
1 New suspension study for LCGT Erina Nishida Ochanomizu University The Graduate School of Humanities and Sciences The Division of Advanced Sciences/ NAOJ.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Springs and Pendulums.
New approach for the determination of the hybridization efficiency of ssDNA nanopatches 1. CNR-INFM, Laboratorio Nazionale TASC, Trieste, Italy 2. SISSA,
Y Z Bai, H Yin, L Liu, D Y Tan, Z B Zhou Center for Gravitational Experiments, School of Physics, Huazhong Univ. of Science &
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti.
Introduction to Nanomechanics (Spring 2012) Martino Poggio.
Minimizing the Resonant Frequency of MGAS Springs for Seismic Attenuation System in Low Frequency Gravitational Waves Interferometers Maddalena Mantovani,
5 kV  = 0.5 nm Atomic resolution TEM image EBPG (Electron beam pattern generator) 100 kV  = 0.12 nm.
HAM-SAS fabrication weekly CALTECH, 4/26/06 V. Boschi, V. Sannibale HAM-SAS Mechanical Model Present Status.
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
Tuning Fork Scanning Probe Microscopy Mesoscopic Group Meeting November 29, 2007.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Why is AFM challenging? 1.Jump to contact: k>max(-   V TS /  z  (static) kA>max(-F TS  oscillating mode)  ideal amplitude is A~ ] 2. Non-monotonic.
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
Introduction to Nanomechanics (Fall 2012) Martino Poggio.
Gravitational Wave Observatories By: Matthew Fournier.
1 MIDTERM EXAM REVIEW. 2 m 081.SLDASM REVIEW Excitation force 50N normal to face k=10000N/m m=6.66kg Modal damping 5%
2009/6/25Amaldi 8 in NewYork City1 Thermal-noise-limited underground interferometer CLIO Kazuhiro Agatsuma and CLIO Collaborators Institute for Cosmic.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Introduction to Nanomechanics (Fall 2012) Martino Poggio.
QD0 stabilisation in CLIC CDR A.Jeremie with LAViSta team.
Active Vibration Isolation using a Suspension Point Interferometer Youichi Aso Dept. Physics, University of Tokyo ASPEN Winter Conference on Gravitational.
Optomechanics Experiments
Yoichi Aso Columbia University, New York, NY, USA University of Tokyo, Tokyo, Japan July 14th th Edoardo Amaldi Conference on Gravitational Waves.
Metallurgha.ir1. Lecture 5 Advanced Topics II Signal, Noise and Bandwidth. Fundamental Limitations of force measurement metallurgha.ir2.
Type-A SAS Local Control Simulation (Current Status)
Introduction to Nanomechanics (Fall 2012)
Overview of quantum noise suppression techniques
Nergis Mavalvala Aspen January 2005
Tuner system Zhenghui MI 2017/01/17
Generation of squeezed states using radiation pressure effects
Quantum optomechanics: possible applications to
Quantum noise reduction techniques for the Einstein telescope
Optical Cooling and Trapping of Macro-scale Objects
Quantum effects in Gravitational-wave Interferometers
Ponderomotive Squeezing Quantum Measurement Group
Advanced LIGO Quantum noise everywhere
Quantum studies in LIGO Lab
Quantum mechanics on giant scales
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Introduction to Nanomechanics (Spring 2012)
Chapter 15 Oscillations.
Advanced Optical Sensing
Mechanics of Nanowires
Gregory A. Phelps This work is sponsored by:
Measurement of radiation pressure induced dynamics
Presentation transcript:

Introduction to Nanomechanics (Spring 2012) Martino Poggio

Cooling Mechanical Resonators Achieve ultimate force resolution Approach the quantum regime Measure mechanical superpositions and coherences Introduction to Nanomechanics2

Superposition & Coherence? Introduction to Nanomechanics

Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics

Introduction to Nanomechanics5 T (K) x rms (x zp )

“Brute Force” Introduction to Nanomechanics

Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = kg  = 2  x 10 MHz x th = 2 x m x zp = 3 x m Introduction to Nanomechanics

Real Numbers (T = 1 K) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg  = 2  x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics

Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = kg  = 2  x 10 MHz x th = 2 x m x zp = 3 x m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg  = 2  x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics

Real Numbers (T = 10 mK) Top-down doubly clamped Si beams (Schwab) m = kg  = 2  x 10 MHz x th = 2 x m x zp = 3 x m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg  = 2  x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics

Technical Challenges Resonator Fabrication (high frequency, low dissipation, low mass) Displacement sensing (low measurement imprecision, i.e. low noise floor) Refrigeration (mK temperatures) Introduction to Nanomechanics

Introduction to Nanomechanics

Expectation vs. Reality Introduction to Nanomechanics13 T (K) N th

Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics

fiber interferometer spectrum analyzer piezo cantilever Usual Cantilever Motion Detection

fiber interferometer spectrum analyzer damping piezo cantilever Simple Electronic Damping

Frequency (Hz) E-3 1E-4 1E-5 T mode = 3.8 K Q 0 = 45,660 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 0 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = 530 mK Q eff = 5,834 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 6.8 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = 71 mK Q eff = 674 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 67 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = 13 mK Q eff = 173 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 263 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = 5.3 mK Q eff = 87 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 525 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = 0.62 mK Q = 36 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 1267 Interferometer shot noise level

Frequency (Hz) E-3 1E-4 1E-5 T mode = mK Q eff = 15 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 3043 Interferometer shot noise level

Frequency (Hz) 4250 Sprectral density (Å 2 /Hz) E-3 1E-4 1E-5 T mode = -3.0 mK Q eff = 10 Cooling (damping) of a cantilever - T = 4.2K g = 4565 Mechanical feedback can cancel photon shot noise! Negative mode temperature?! Interferometer shot noise level

fiber interferometer spectrum analyzer damping piezo cantilever Experimental setup measurement noise

Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: Cantilever Noise Temperature with Feedback

Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: For optimum feedback gain Cantilever Noise Temperature with Feedback

Frequency (Hz) 4250 Spectral density (Å 2 /Hz) E-3 1E-4 1E-5 T = 4.2 K T mode = 5.3 K T mode = 530 mK T mode = 73 mK T mode = 16 mK T mode = 4.6 mK T mode = 8.3 mK T mode = 5.3 mK T mode = 9.3 mK Cooling (damping) of a cantilever - T = 4.2K → 4.6mK

g 3000 T mode (mK) T = 4.2 K Q 0 = 45,660 Theoretical Limit T mode, min = 4.6 mK Q eff = 36 Cooling (damping) of a cantilever – model and experiment

Theoretical Limit g T mode (K) T = 295 K T mode = 2.9 mK T = 4.2 K T = 2.2 K 10 2 Cooling (damping) of a cantilever – model and experiment