Introduction to Nanomechanics (Spring 2012) Martino Poggio
Cooling Mechanical Resonators Achieve ultimate force resolution Approach the quantum regime Measure mechanical superpositions and coherences Introduction to Nanomechanics2
Superposition & Coherence? Introduction to Nanomechanics
Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics
Introduction to Nanomechanics5 T (K) x rms (x zp )
“Brute Force” Introduction to Nanomechanics
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = kg = 2 x 10 MHz x th = 2 x m x zp = 3 x m Introduction to Nanomechanics
Real Numbers (T = 1 K) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg = 2 x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = kg = 2 x 10 MHz x th = 2 x m x zp = 3 x m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg = 2 x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics
Real Numbers (T = 10 mK) Top-down doubly clamped Si beams (Schwab) m = kg = 2 x 10 MHz x th = 2 x m x zp = 3 x m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = kg = 2 x 500 MHz x th = 4 x m x zp = 4 x m Introduction to Nanomechanics
Technical Challenges Resonator Fabrication (high frequency, low dissipation, low mass) Displacement sensing (low measurement imprecision, i.e. low noise floor) Refrigeration (mK temperatures) Introduction to Nanomechanics
Introduction to Nanomechanics
Expectation vs. Reality Introduction to Nanomechanics13 T (K) N th
Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics
fiber interferometer spectrum analyzer piezo cantilever Usual Cantilever Motion Detection
fiber interferometer spectrum analyzer damping piezo cantilever Simple Electronic Damping
Frequency (Hz) E-3 1E-4 1E-5 T mode = 3.8 K Q 0 = 45,660 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 0 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = 530 mK Q eff = 5,834 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 6.8 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = 71 mK Q eff = 674 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 67 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = 13 mK Q eff = 173 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 263 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = 5.3 mK Q eff = 87 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 525 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = 0.62 mK Q = 36 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 1267 Interferometer shot noise level
Frequency (Hz) E-3 1E-4 1E-5 T mode = mK Q eff = 15 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 3043 Interferometer shot noise level
Frequency (Hz) 4250 Sprectral density (Å 2 /Hz) E-3 1E-4 1E-5 T mode = -3.0 mK Q eff = 10 Cooling (damping) of a cantilever - T = 4.2K g = 4565 Mechanical feedback can cancel photon shot noise! Negative mode temperature?! Interferometer shot noise level
fiber interferometer spectrum analyzer damping piezo cantilever Experimental setup measurement noise
Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: Cantilever Noise Temperature with Feedback
Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: For optimum feedback gain Cantilever Noise Temperature with Feedback
Frequency (Hz) 4250 Spectral density (Å 2 /Hz) E-3 1E-4 1E-5 T = 4.2 K T mode = 5.3 K T mode = 530 mK T mode = 73 mK T mode = 16 mK T mode = 4.6 mK T mode = 8.3 mK T mode = 5.3 mK T mode = 9.3 mK Cooling (damping) of a cantilever - T = 4.2K → 4.6mK
g 3000 T mode (mK) T = 4.2 K Q 0 = 45,660 Theoretical Limit T mode, min = 4.6 mK Q eff = 36 Cooling (damping) of a cantilever – model and experiment
Theoretical Limit g T mode (K) T = 295 K T mode = 2.9 mK T = 4.2 K T = 2.2 K 10 2 Cooling (damping) of a cantilever – model and experiment