Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1.

Slides:



Advertisements
Similar presentations
The STARTS Model David A. Kenny December 15, 2013.
Advertisements

1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Topic 12: Multiple Linear Regression
SEM PURPOSE Model phenomena from observed or theoretical stances
Computational Statistics. Basic ideas  Predict values that are hard to measure irl, by using co-variables (other properties from the same measurement.
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Growth Curve Model Using SEM
Estimating “Heritability” using Genetic Data David Evans University of Queensland.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Bivariate Model: traits A and B measured in twins cbca.
Summarizing Variation Michael C Neale PhD Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.
Multiple raters March 7 th, 2002 Boulder, Colorado John Hewitt.
LECTURE 5 TRUE SCORE THEORY. True Score Theory OBJECTIVES: - know basic model, assumptions - know definition of reliability, relation to TST - be able.
Longitudinal Modeling Nathan, Lindon & Mike LongitudinalTwinAnalysis_MatrixRawCon.R GenEpiHelperFunctions.R jepq.txt.
ACDE model and estimability Why can’t we estimate (co)variances due to A, C, D and E simultaneously in a standard twin design?
Biometrical Genetics Pak Sham & Shaun Purcell Twin Workshop, March 2002.
David M. Evans Sarah E. Medland Developmental Models in Genetic Research Wellcome Trust Centre for Human Genetics Oxford United Kingdom Twin Workshop Boulder.
Gene x Environment Interactions Brad Verhulst (With lots of help from slides written by Hermine and Liz) September 30, 2014.
Regressing SNPs on a latent variable Michel Nivard & Nick Martin.
The Autoregressive Model of Change David A. Kenny.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Analysis of Covariance Goals: 1)Reduce error variance. 2)Remove sources of bias from experiment. 3)Obtain adjusted estimates of population means.
LECTURE 16 STRUCTURAL EQUATION MODELING.
Review for Exam 2 Some important themes from Chapters 6-9 Chap. 6. Significance Tests Chap. 7: Comparing Two Groups Chap. 8: Contingency Tables (Categorical.
Regression and Correlation Methods Judy Zhong Ph.D.
“Beyond Twins” Lindon Eaves, VIPBG, Richmond Boulder CO, March 2012.
Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić (BioPsy VU) Boulder Twin Workshop March 4, 2014 Based on PPTs.
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Extending Simplex model to model Ph  E transmission JANNEKE m. de kort & C.V. DolAn Contact:
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Longitudinal Modeling Nathan Gillespie & Dorret Boomsma \\nathan\2008\Longitudinal neuro_f_chol.mx neuro_f_simplex.mx jepq6.dat.
The importance of the “Means Model” in Mx for modeling regression and association Dorret Boomsma, Nick Martin Boulder 2008.
Gene-Environment Interaction & Correlation Danielle Dick & Danielle Posthuma Leuven 2008.
Multivariate Statistics Confirmatory Factor Analysis I W. M. van der Veld University of Amsterdam.
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Attention Problems – SNP association Dorret Boomsma Toos van Beijsterveldt Michel Nivard.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Developmental Models: Latent Growth Models Brad Verhulst & Lindon Eaves.
David M. Evans Multivariate QTL Linkage Analysis Queensland Institute of Medical Research Brisbane Australia Twin Workshop Boulder 2003.
Genetic simplex modeling of personality in adolescent Australian twins N.A. GILLESPIE 1, D. M. EVANS 1, N.G. MARTIN 1 1 Queensland Institute of Medical.
Model building & assumptions Matt Keller, Sarah Medland, Hermine Maes TC21 March 2008.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Slides: faculty/sanja/2016/Moderating_covariances_IQ_SES/Slides/Moderating_covariances_practical.
Extended Pedigrees HGEN619 class 2007.
Department of Psychiatry, Washington University School of Medicine
Genetic simplex model: practical
Gene-environment interaction
Introduction to Multivariate Genetic Analysis
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Modelos para datos longitudinales
CHAPTER 29: Multiple Regression*
Continuously moderated effects of A,C, and E in the twin design
in the classical twin design
Estimates and 95% CIs of between- and within-pair variations for SS and OS twin pairs and achievement test scores in mathematics and reading assessed in.
GxE and GxG interactions
\nathan\RaterBias.
moderation model common pathway model cross-lagged model
Getting more from multivariate data: Multiple raters (or ratings)
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Presentation transcript:

Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1

2 Two general approaches to longitudinal modeling Markov models: (Vector) autoregressive models for continuous data (Hidden) Markov transition models discrete data (Mixtures thereof) Growth curve models (Brad Verhulst, Lindon Eaves): Focus on linear and non-linear growth curves Typically multilevel or random effects model (Mixtures thereof) Which to use? Use the model that fit the theory / data / hypotheses

y1 y2y3y4 x1x2x3x4 xx xx xx e1e1 e4e4 e3e3 e2e b2,1 b3,2b4,3 First order autoregression model. A (quasi) simplex model (var(e)>0). 1 b 01 b 02 b 03 b 04

y1 y2y3y4 x1x2x3x4 xx xx xx e1e1 e4e4 e3e3 e2e b2,1 b3,2b4,3 y ti = b 0t + x ti + e ti x 1i = x 1i =  x 1i x ti = b t-1,t x t-1i +  x ti var(y 1 ) = var(x 1 ) + var(e 1 ) var(x t ) = b t-1,t 2 var(x t ) + var(  x t ) cov(x t,x t-1 ) = b t-1,t var(x t ) First order autoregression model. A quasi simplex model (var(e)>0).

y1 y2y3y4 x1x2x3x4 xx xx xx e1e1 e4e4 e3e3 e2e b2,1 b3,2b4,3 Identification issue: var(e 1 ) and var(e t ) are not identified. Solution set to zero, or equate var(e 1 ) = var(e 2 ), var(e 3 ) = var(e 4 ) First order autoregression model. A quasi simplex model (var(e)>0).

var(y 1 ) = var(x 1 ) + var(e 1 ) var(x t ) = b t-1,t 2 var(x t ) + var(  x t ) cov(x t,x t-1 ) = b t-1,t var(x t ) Reliability at each t, rel(t) : rel(x 1 ) = var(x 1 ) / {var(x 1 ) + var(e 1 )} Interpretation: % of variance in y at t due to latent x at t Standardized stats I:

var(y 1 ) = var(x 1 ) + var(e 1 ) var(x t ) = b t-1,t 2 var(x t ) + var(  x t ) cov(x t,x t-1 ) = b t-1,t var(x t ) Stability at each t,t-1, stab(t,t-1): b t-1,t 2 var(x t ) / {b t-1,t 2 var(x t ) + var(  x t )} Interpretation: % of the variance in x at t explained by regression on x at t-1 (latent level!) Standardized stats II:

var(y 1 ) = var(x 1 ) + var(e 1 ) var(x t ) = b t-1,t 2 var(x t ) + var(  x t ) cov(x t,x t-1 ) = b t-1,t var(x t ) Correlation t,t-1, cor(t,t-1): b t-1,t 2 var(x t ) / {sd(y t-1 ) * sd(y t )} sd(y t ) = sqrt(var(x t ) + var(e t )) var(x t ) = b t-1,t 2 var(x t ) + var(  x t ) Interpretation: strength of linear relationship Standardized stats III:

y1 y2y3y4 x1x2x3x4 xx xx xx e1e1 e4e4 e3e3 e2e

y1 y2y3y4 x1x2x3x4 e1e1 e4e4 e3e3 e2e b2,1 b3,2b4,3 Special case: factor model var(  x t ) (t=2,3,4) = 0 y1 y2y3y4 x1 e1e1 e4e4 e3e3 e2e b 2,1 b 2,1 b 3,2 b 2,1 b 3,2 b 4,3

var(  x t ) (t=2,3,4) = 0

12  ph =  A +  C +  E Multivariate decomposition of phenotypic covariance matrix:  ph1  ph12  ph2  =  A +  C +  E r  A +  C +  E  A +  C +  E

13  ph =  A +  C +  E Estimate  A using a Cholesky-decomp  A =  A  A t  A =                       

14  ph =  A +  C +  E Model  A a simplex model  A =  A  A  A t  A

15  A =  A  A  A  t  A  A = 0000 b A b A b A43 0

16  A =  A  A  A  t  A  A = var(A 1 )000 0var(  A2 )00 00 var(  A3 )0 000var(  A4 )

17  A =  A  A  A  t  A  A = var(a 1 )000 0var(a 2 )00 00 var(a 3 )0 000var(a 4 )

18 A1 A2A3A4 A1A2A3A4 A2A2   A4A4 a1a4 a3a b A2,1 b A3,2 b A4,3 The genetic simplex (note my scaling)

y11 E1 1 y21 E2 1 C1 y12 E1 2 y22 E2 2 C2 y13 E1 3 y23 E2 3 C3 y14 E1 4 y24 E2 4 C4 A1 1 A1 2 A1 3 A1 4 A2 1 A2 2 A2 3 A2 4 AA AA AA AA AA AA EE EE EE EE EE EE CC CC CC

AA y12 E1 2 y22 E2 2 C2 A1 2 A2 2 AA EE EE CC a2 c2 e2 a2 c2 e2 Occasion specific effects

21 Question: h 2, c 2, and e 2 at each time point? var(y t ) = {var(A t ) + var(a t )} + {var(C t ) + var(c t )} + {var(E t ) + var(e t )} h 2 = {var(A t ) + var(a t )} / var(y t ) c 2 = {var(C t ) + var(c t )} / var(y t ) e 2 = {var(E t ) + var(e t )} / var(y t ) y12 E1 2 C2 A1 2 AA EE CC a2 c2 e2

22 y13 E1 3 C3 y14 E1 4 C4 A1 3 A1 4 AA AA EE EE CC CC Question: contributions to stability t-1 to t b At-1,t 2 var(A t ) / {b At-1,t 2 var(A t ) + var(  A t )+var(a t )} b Ct-1,t 2 var(C t ) / {b Ct-1,t 2 var(C t ) + var(  C t )+var(c t } b Et-1,t 2 var(E t ) / {b Et-1,t 2 var(E t ) + var(  E t )+var(e t )}

23 Question: contributions to stability t-1 to t {b At-1,t 2 var(A t )+ b Ct-1,t 2 var(C t )+ b Et-1,t 2 var(E t )} [{b At-1,t 2 var(A t ) + var(  A t )+var(a t )} + {b Ct-1,t 2 var(C t ) + var(  C t )+var(c t } + {b Et-1,t 2 var(E t ) + var(  E t )+var(e t )}] Decompose the phenotypic covariance into A,C,E components

24 Hottenga, etal. Twin Research and Human Genetics, 2005

Birley et al. Behav Genet 2005 (alternative: growth curve modeling)

26 Anx/dep stability due to A and E from 3y to 63 years Nivard et al, 2014

27 Variations on the theme

y11 E1 1 y21 E2 1 C1 y12 E1 2 y22 E2 2 C2 y13 E1 3 y23 E2 3 C3 y14 E1 4 y24 E2 4 C4 A1 1 A1 2 A1 3 A1 4 A2 1 A2 2 A2 3 A2 4 AA AA AA AA AA AA EE EE EE EE EE EE CC CC CC Phenotype-to-phenotype transmission (Eaves etal. 1986)

y11 E1 1 y21 E2 1 C1 y12 E1 2 y22 E2 2 C2 y13 E1 3 y23 E2 3 C3 y14 E1 4 y24 E2 4 C4 A1 1 A1 2 A1 3 A1 4 A2 1 A2 2 A2 3 A2 4 AA AA AA AA AA AA EE EE EE EE EE EE CC CC CC Sibling “interaction” mutual direct phenotypic influence (Eaves, 1976; Carey, 1986)

y E y E C y E y E C y E y E C y E y E C AAAA AAAA aaa aaa e e ee ee ccc 30 Niching picking (Eaves et al., 1977 )

31 Niching picking (Eaves et al., 1977 )

32 “Niche-picking” During development children seek out and create and are furnished surrounding (E) that fit their phenotype. A smart child growing up will pick the niche that fits her/her phenotypic intelligence. A anxious child growing up may pick out the niche that least aggrevates his / her phenotypic anxiety. Phenotype of twin 1 at time t -> environment of twin 1 at time t+1 (parameters  t )

33 Mutual influences During development children’s behavior may contribute to the environment of their siblings. A smart child growing up will pick the niche that fits her/her phenotypic intelligence and in so doing may influence (contriibute to) the environment of his or her sibling. A behavior of an anxious child may be a source of stress for his or her siblings. Phenotype of twin 1 at time t -> environment of twin 2 at time t+1 (parameters  t )

ACE simplex T=4 Identification in ACE simplex with no additional constraints. Except: Occasion specific residual variance decomposition: Var[y(t)|A(t), E(t), C(t)] = var[  (t)] Var[  (t)] = var[a(t)]+var[e(t)], t=1,…,4 34

Identification #1 T=4 ph ti  E (t+1)j (i=j) ph ti  E (t+1)j (i≠j)  1,  2,  3  1,  2,  3 (not ID)  1,  2 =  3  1,  2 =  3  k =b 0  +(k-1)*b 1   k =b 0  +(k-1)*b 1  (k=1,2,3) but  1 =  2,  3  1 =  2,  3 (not ID) Presence of C not relevant to this results Good…..? 35

36

N required given plausible values ACE  1,  2 =  3 &  1,  2 =  3  k  k ~N (power=.80) Hypothesis:  1 =  2 =  3 =0 &  1 =  2 =  3 =0 (4df) 37 Good....?

Not Good!

N required given plausible values AE  1,  2 =  3 &  1,  2 =  3  k  k ~N (power=.80) Hypothesis:  1 =  2 =  3 =0 &  1 =  2 =  3 =0 (4df) Good...?

True AE+  k &  k (Nmz=Ndz=1000)  k b k ACE simplex df= (approximate model equivalence) Good...?

y*11 E1 1 y*21 E2 1 y*12 E1 2 y*22 E2 2 y*13 E1 3 y*23 E2 3 y*14 E1 4 y*24 E2 4 A1 1 A1 2 A1 3 A1 4 A2 1 A2 2 A2 3 A2 4 AA AA AA AA AA AA EE EE EE EE EE EE 1 1 11 22 33 33 22 11 11 11 22 33 33 22 1 1

43 The proportions of observed FSIQ data 0.812, 0.295, 0.490, (MZ twin 1) 0.812, 0.295, 0.490, (MZ twin 2) 0.774, 0.379, 0.598, (DZ twin1) 0.774, 0.379, 0.598, (DZ twin 2) 261 MZ and 301 DZ twin pairs. Full scale IQ. mean (std) ages 5.5y (.30), 6.8y (.19), 9.7y (.43), and 12.2y (.24).

44 5.5y6.8y9.7y12.2y MZ FSIQ correlation DZ FSIQ correlation Red: MZ stdevs Green: DZ stdevs

45 Fitted standard simplex Var(a t ) = zero time specific A zero Var(  A3 ) = var(  A4 ) = 0A inno at t=3,4 zero Chi2(63) = 76.8, p= 0.11

46 FSIQ 5.5y6.8y9.7y12.2y A variance h 2 =.27h 2 =.48h 2 =.60h 2 =.54

47 E variance e 2 =.23 e 2 =.29e 2 =.20e 2 =.22

48 C variance c 2 =.50c 2 =.23c 2 =.20c 2 =.24

49 OPEN ACCESS Dolan, C.V, Janneke M. de Kort, Kees-Jan Kan, C. E. M. van Beijsterveldt, Meike Bartels and Dorret I. Boomsma (2014). Can GE-covariance originating in phenotype to environment transmission account for the Flynn effect? Journal of Intelligence. Submitted. Dolan, C.V., Johanna M. de Kort, Toos C.E.M. van Beijsterveldt, Meike Bartels, & Dorret I. Boomsma (2014). GE Covariance through phenotype to environment transmission: an assessment in longitudinal twin data and application to childhood anxiety. Beh. Gen. In Press.

y E y E y E y E y E y E y E y E AAAA AAAA AAA AAA E E EE EE 1 1 11 22 33 33 22 11 11 11 22 33 33 22 1 1

Anxious depression Twins aged 3,7,10,12 Netherlands Twin Register (NTR), which includes the Young NTR (YNTR; van Beijsterveldt, Groen-Blokhuis, Hottenga, et al., 2013) ASEBA CBCL instruments (Achenbach), maternal ratings Observed 89%, 54%, 45%, 37% (NMZ=3480) Observed 89%, 50%, 39%, 32% (NDZ=3145) 51

Phenotypic correlations FIML phenotypic twin correlations MZ:.71 (3),.58 (7),.58 (10), and.63 (12). DZ:.31 (3),.36 (7),.35 (10), and.40 (12). From 7y onwards looks like ACE model 52

Model loglnparAICBIC 1 ACE AE AE +  k,  k AE +  k ACE ph1->ph2 (2) ACE ph->ph (1)

y E y E y E y E y E y E y E y E AAAA AAAA aaa aaa e e ee ee 1 1 1 22 11 22 22 22  1 =0.123 (s.e..041) and  2 =  3 = (s.e..027)

55 Parameter estimates in the analysis of Anxiety from 3y to 12y. ML estimates and robust standard errors in parentheses in the AE simplex with parameter  k, logl = ). t=1 (3y)t=2 (7y)t=3 (10y)t=4 (12y) b At,t (.062)0.886 (.099)0.790 (.100)  At  b Et,t (.182)1.017 (.232)0.799 (.125)  Et   a t   e t   1   2  3 

56 A1E A E A Correlated E – But not C! E G-E covariance

Identification #2 T=4 b A2,1 =b A3,2 =b A4,3 OR b C2,1 =b C3,2 =b C4,3 OR b E2,1 =b E3,2 =b E4,3 OR (of course) b C2,1 =b C3,2 =b C4,3 = b E2,1 =b E3,2 =b E4,3 ph ti  E (t+1)j (i=j) ph ti  E (t+1)j (i≠j)  1,  2,  3  1,  2,  3 57