Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: October 1, 2010 Variation.

Slides:



Advertisements
Similar presentations
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 10, 2013 Statistical Static Timing Analysis.
Advertisements

VLSI Design Lecture 3a: Nonideal Transistors. Outline Transistor I-V Review Nonideal Transistor Behavior Velocity Saturation Channel Length Modulation.
Penn ESE534 Spring Mehta & DeHon 1 ESE534 Computer Organization Day 6: February 12, 2014 Energy, Power, Reliability.
0 1 Width-dependent Statistical Leakage Modeling for Random Dopant Induced Threshold Voltage Shift Jie Gu, Sachin Sapatnekar, Chris Kim Department of Electrical.
Introduction to CMOS VLSI Design Lecture 15: Nonideal Transistors David Harris Harvey Mudd College Spring 2004.
1 ESE534: Computer Organization Day 16: March 24, 2010 Component-Specific Mapping Penn ESE534 Spring2010 – DeHon, Gojman, Rubin.
Introduction to CMOS VLSI Design Lecture 19: Nonideal Transistors
Introduction to CMOS VLSI Design MOS Behavior in DSM.
EE/MAtE1671 Front-End-Of-Line Variability Considerations EE/MatE 167 David Wahlgren Parent.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 22, 2009 Statistical Static Timing Analysis.
EE/MAtE1671 Process Variability EE/MatE 167 David Wahlgren Parent.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 20: Circuit Design Pitfalls Prof. Sherief Reda Division of Engineering,
VLSI Design Lecture 3a: Nonideal Transistors
1 Variability Characterization in FPGAs Brendan Hargreaves 10/05/2006.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 14: March 19, 2008 Statistical Static Timing Analysis.
Institute of Digital and Computer Systems 1 Fabio Garzia / Finding Peak Performance in a Process23/06/2015 Chapter 5 Finding Peak Performance in a Process.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 26: April 18, 2007 Et Cetera…
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 22: April 11, 2011 Statistical Static Timing Analysis.
Introduction to CMOS VLSI Design Nonideal Transistors.
Advanced Computing and Information Systems laboratory Device Variability Impact on Logic Gate Failure Rates Erin Taylor and José Fortes Department of Electrical.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 32: November 24, 2010 Uncorrelated Noise.
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 24, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 30: November 12, 2014 Memory Core: Part.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 16, 2013 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 28, 2011 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 13, 2014 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 3: September 3, 2014 Gates from Transistors.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 14: October 1, 2014 Layout and.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2011 Memory Core.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 24, 2010 MOS Model.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 5, 2011 Layout and.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 2: August 30, 2013 Transistor Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 17, 2014 MOS Model.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 37: December 8, 2010 Adiabatic Amplification.
Process Variation Mohammad Sharifkhani. Reading Textbook, Chapter 6 A paper in the reference.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: September 27, 2013 Variation.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 26: October 31, 2014 Synchronous Circuits.
Outline Introduction: BTI Aging and AVS Signoff Problem
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 24: April 22, 2015 Statistical Static Timing Analysis.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 14, 2013 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 2: September 9, 2011 Transistor Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 30: November 19, 2010 Crosstalk.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 15, 2014 Delay and RC Response.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 17: October 19, 2011 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 2: August 29, 2014 Transistor Introduction.
Day 16: October 6, 2014 Inverter Performance
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 22: October 31, 2011 Pass Transistor Logic.
Variation. 2 Sources of Variation 1.Process (manufacturing) (physical) variations:  Uncertainty in the parameters of fabricated devices and interconnects.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 19, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 10, 2014 Restoration.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 25, 2013 MOS Transistors.
EE201C : Stochastic Modeling of FinFET LER and Circuits Optimization based on Stochastic Modeling Shaodi Wang
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 19, 2011 Restoration.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 23: October 24, 2014 Pass Transistor Logic:
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 19: March 28, 2012 Minimizing Energy.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 3, 2012 Layout and.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: September 22, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 19, 2012 Ratioed Logic.
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 4: September 12, 2012 Transistor Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 20, 2013 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 5: September 8, 2014 Transistor Introduction.
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 8: February 10, 2010 Energy, Power, Reliability.
Day 12: October 4, 2010 Layout and Area
Day 9: September 27, 2010 MOS Transistor Basics
Day 12: October 1, 2012 Variation
Presentation transcript:

Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: October 1, 2010 Variation

Previously Understand how to model transistor behavior Given that we know its parameters –V dd, V th, t OX, C OX, W, L, N A … Penn ESE370 Fall DeHon 2 C GC C GCS C GCB

But… We don’t know its parameters (perfectly) 1.Fabrication parameters have error range 2.Identically drawn devices differ 3.Parameters change with environment 4.Parameters change with time Penn ESE370 Fall DeHon 3

Today Sources of Variation –Fabrication –Operation –Aging Coping with Variation –Margin –Corners –Binning Penn ESE370 Fall DeHon 4

Fabrication Penn ESE370 Fall DeHon 5

Process Shift Oxide thickness Doping level Layer alignment Growth and Etch times/rates Vary machine-to-machine, day-to-day Impact all transistors on wafer Penn ESE370 Fall DeHon 6

Region Correlated Parameters change consistently across wafer or chip based on location Chemical-Mechanical Polishing (CMP) –Dishing Lens distortion Penn ESE370 Fall DeHon 7

Penn ESE535 Spring DeHon 8 Oxide Thickness [Asenov et al. TRED 2002]

Penn ESE535 Spring DeHon 9 Line Edge Roughness 1.2  m and 2.4  m lines From:

Optical Sources What is the wavelength of light? How compare to 45nm feature size? Penn ESE370 Fall DeHon 10

Penn ESE535 Spring DeHon 11 Phase Shift Masking Source

Penn ESE535 Spring DeHon 12 Line Edges (PSM) Source:

Penn ESE535 Spring DeHon 13 Intel 65nm SRAM (PSM) Source:

Penn ESE535 Spring DeHon 14 Statistical Dopant Placement [Bernstein et al, IBM JRD 2006]

Random Trans-to-Trans Random dopant fluctuation Local oxide variation Line edge roughness Etch and growth rates Transistors differ from each other in random ways Penn ESE370 Fall DeHon 15

Penn ESE535 Spring DeHon 16 Source: Noel Menezes, Intel ISPD2007

Impact Changes parameters –W, L, t OX, V th Change transistor behavior Penn ESE370 Fall DeHon 17

Example: V th Many physical effects impact V th –Doping, dimensions, roughness Behavior highly dependent on V th Penn ESE370 Fall DeHon 18

Penn ESE535 Spring DeHon 19 V th 65nm [Bernstein et al, IBM JRD 2006]

Impact Performance V th  I ds  Delay (R on * C load ) Penn ESE370 Fall DeHon 20

Impact of V th Variation Penn ESE535 Spring DeHon 21

FPGA Logic Variation Altera Cyclone-II 90nm Penn ESE370 Fall DeHon 22 [Wong, FPT2007]

Operation Temperature Voltage Penn ESE370 Fall DeHon 23

Temperature Changes Different ambient environments –January in Maine –August in Philly –September in LA –Air conditioned machine room Self heat from activity of chip Quality of heat sink Penn ESE370 Fall DeHon 24

Voltage Power supply isn’t perfect Differs from design to design –Board to board? IR-drop in distribution Bounce with current spikes Penn ESE370 Fall DeHon 25

Aging Hot Carrier NBTI Penn ESE370 Fall DeHon 26

Hot Carriers Trap electrons in oxide –Also shifts V th Penn ESE370 Fall DeHon 27

NBTI Negative Bias Temperature Instability –Interface traps, Holes Long-term negative gate-source voltage –Affects PFET most Increase V th Partially recoverable? Temperature dependent Penn ESE370 Fall DeHon 28 [Stott, FPGA2010]

Measured Accelerated Aging Penn ESE370 Fall DeHon 29 [Stott, FPGA2010]

Coping with Variation Penn ESE370 Fall DeHon 30

Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Penn ESE370 Fall DeHon 31

Penn ESE535 Spring DeHon 32 Variation Margin for expected variation Must assume V th can be any value in range –Speed  assume V th slowest value Probability Distribution V TH I on,min =I on (V th,max ) I d,sat  (V gs -V th ) 2

Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Validate design at extremes –Work for both V th,min and V th,max ? –Design for worst-case scenario Penn ESE370 Fall DeHon 33

Margining Also margin for –Temperature –Voltage –Aging: end-of-life Penn ESE370 Fall DeHon 34

Process Corners Many effects independent Many parameters With N parameters, –Look only at extreme ends (low, high) –How many cases? Try to identify the {worst,best} set of parameters –Slow corner of design space, fast corner Use corners to bracket behavior Penn ESE370 Fall DeHon 35

Range of Behavior Still get range of performances Any way to exploit the fact some are faster? Penn ESE370 Fall DeHon 36 Probability Distribution Delay

Penn ESE535 Spring DeHon 37 Speed Binning Probability Distribution Delay Discard Sell Premium Sell nominal Sell cheap

Admin HW4 out today Andrew lecture on Monday –Explain how to understand pretty pictures on HW4 Andre out Tuesday Andre back for lecture on Wednesday Penn ESE370 Fall DeHon 38

Idea Parameters Approximate Differ –Chip-to-chip, transistor-to-transistor, over time Robust design accommodates –Tolerance and Margins Penn ESE370 Fall DeHon 39