Complex Digital Circuit Design for LHC Low Level RF

Slides:



Advertisements
Similar presentations
University of Malta ICECS 2010 Terence Zarb, Ivan Grech, Edward Gatt, Owen Casha, Joseph Micallef Presented by: Terence Zarb Department of Microelectronics.
Advertisements

Lorentz force detuning measurements on the CEA cavity
Maciej Gołaszewski Tutor: Tadeusz Sondej, PhD Design and implementation of softcore dual processor system on single chip FPGA Design and implementation.
Digital RF Stabilization System Based on MicroTCA Technology - Libera LLRF Robert Černe May 2010, RT10, Lisboa
FPGA Programming for Real Time Analysis of Lidar Systems
University Of Vaasa Telecommunications Engineering Automation Seminar Signal Generator By Tibebu Sime 13 th December 2011.
EELE 367 – Logic Design Module 2 – Modern Digital Design Flow Agenda 1.History of Digital Design Approach 2.HDLs 3.Design Abstraction 4.Modern Design Steps.
Next in line… Advance techniques in design optimisations. Introduction to synthesis tools. Design flow using FPGA and ASIC. Summary.
3. Digital Implementation of Mo/Demodulators
LINAC 4 – LLRF ELECTRONICS UPDATE BCC-42 A.K. Bhattacharyya, A. Butterworth, F. Dubouchet, J. Molendijk, T. Mastoridis, J. Noirjean(reporter), D. Stellfeld,
Software Defined Radio Mentor: Dr. Brian Banister Sponsor: Comtech AHA Team: Brad Eylander, Dylan Kievit, Jeff Chang, Ted Storms Acknowledgements: Dr.
STARLight PDR 3 Oct ‘01H.1 Miller STARLight Sensor Signal Processing Ryan Miller STARLight Electrical Engineer (734)
Software Defined Radio on Field Programmable Gate Array Karel L STERCKX Shinawatra University, Thailand.
Spectrum Analyzer Ray Mathes, Nirav Patel,
VLSI Design Lab Introduction
THANGJAM105/MAPLD1 EFFICIENT FPGA IMPLEMENTATION OF PWM CORE.
Advanced FPGA Based System Design Lecture-5-6 Introduction to VHDL By: Dr Imtiaz Hussain 1.
Ion source RF system Andy Butterworth BE/RF Mauro Paoluzzi BE/RF 14/11/2013Linac4 ion source review.
GallagherP188/MAPLD20041 Accelerating DSP Algorithms Using FPGAs Sean Gallagher DSP Specialist Xilinx Inc.
Linac 4 LL RF Hardware Architecture and Design Status
Anthony Gaught Advisors: Dr. In Soo Ahn and Dr. Yufeng Lu Department of Electrical and Computer Engineering Bradley University, Peoria, Illinois May 7,
RF Commissioning Andy Butterworth BE/RF Thanks to: J. Tuckmantel, T. Linnecar, E. Montesinos, J. Molendijk, O. Brunner, P. Baudrenghien, L. Arnaudon, P.
Digital Radio Receiver Amit Mane System Engineer.
LLRF System for Pulsed Linacs (modeling, simulation, design and implementation) Hooman Hassanzadegan ESS, Beam Instrumentation Group 1.
1 3-General Purpose Processors: Altera Nios II 2 Altera Nios II processor A 32-bit soft core processor from Altera Comes in three cores: Fast, Standard,
System Arch 2008 (Fire Tom Wada) /10/9 Field Programmable Gate Array.
The GNU in RADIO Shravan Rayanchu. SDR Getting the code close to the antenna –Software defines the waveform –Replace analog signal processing with Digital.
FPGA (Field Programmable Gate Array): CLBs, Slices, and LUTs Each configurable logic block (CLB) in Spartan-6 FPGAs consists of two slices, arranged side-by-side.
Jan 30, 2008MAC meeting1 Linac4 Low Level RF P. Baudrenghien with help from J. Molendijk CERN AB-RF.
BI day 2011 T Bogey CERN BE/BI. Overview to the TTpos system Proposed technical solution Performance of the system Lab test Beam test Planning for 2012.
1 LLRF Pre-readiness review (26th May, 2009) 27/10/2015 LLRF performance and its limitation based on KEK's experiments Shin Michizono (KEK) KEK’s LLRF.
Introduction to FPGA Created & Presented By Ali Masoudi For Advanced Digital Communication Lab (ADC-Lab) At Isfahan University Of technology (IUT) Department.
LLRF-05 Oct.10,20051 Digital LLRF feedback control system for the J-PARC linac Shin MICHIZONO KEK, High Energy Accelerator Research Organization (JAPAN)
Lecture #3 Page 1 ECE 4110–5110 Digital System Design Lecture #3 Agenda 1.FPGA's 2.Lab Setup Announcements 1.HW#2 assigned Due.
Measurement opportunities with the LHC transverse damper W. Hofle, D. Valuch.
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser 1 Frank Ludwig, DESY XFEL-LLRF-ATCA Meeting, 3-4 December 2007 Downconverter Cavity Field.
Fast Fault Finder A Machine Protection Component.
A preliminary approach to the needs of open loop control of the Lorentz Force Detuning is to generate a custom piezo control signal with proper and tunable.
Jørgen S. Nielsen Institute for Storage Ring Facilities (ISA) Aarhus University Denmark 1 ESLS-RF 14 (29-30/9 2010), ASTRID and ASTRID2 new LLRF.
LOGIC OPTIMIZATION USING TECHNOLOGY INDEPENDENT MUX BASED ADDERS IN FPGA Project Guide: Smt. Latha Dept of E & C JSSATE, Bangalore. From: N GURURAJ M-Tech,
Present Uses of the Fermilab Digital Signal Receiver VXI Module Brian Chase,Paul Joireman, Philip Varghese RF Embedded Systems (LLRF) Group.
© 2003 Xilinx, Inc. All Rights Reserved Course Wrap Up DSP Design Flow.
Spectral Observer with Reduced Information Demand György Orosz, László Sujbert, Gábor Péceli Department of Measurement and Information Systems Budapest.
R.SREEDHARAN  SOLEIL main parameters  Booster and storage ring low level RF system  New digital Booster LLRF system under development  Digital LLRF.
A New Class of High Performance FFTs Dr. J. Greg Nash Centar ( High Performance Embedded Computing (HPEC) Workshop.
Other Utilities of ALBA LLRF
BCC-35 A.K. Bhattacharyya, A. Butterworth, F. Dubouchet, J. Molendijk, T. Mastoridis, J. Noirjean(reporter), S. Rey, D. Stellfeld, D. Valuch, P.Baudrenghien.
SPS 200 MHz LLRF upgrade Part 2: Implementation Philippe Baudrenghien, Grégoire Hagmann,
Digital Receiver and Modulator Architecture for Multi-harmonic RF Finemet Operation 03/11/2015 LLRF15: Digital Receiver and Modulator Architecture for.
Matthias Liepe. Matthias Liepe – High loaded Q cavity operation at CU – TTC Topical Meeting on CW-SRF
CS section activities Industrial controls Luca Arnaudon David Glenat David Landre Slawomir Totos Ruben Lorenzo-Ortega Digital hardware John Molendijk.
RF Commissioning D. Jacquet and M. Gruwé. November 8 th 2007D. Jacquet and M. Gruwé2 RF systems in a few words (I) A transverse dampers system ACCELERATING.
BE-RF-FB THE LINAC4 LOW LEVEL RF 02/11/2015 LLRF15, THE LINAC4 LOW LEVEL RF2 P. Baudrenghien, J. Galindo, G. Hagmann, J. Noirjean, D. Stellfeld, D.Valuch.
Design of a direct conversion 200 MHz non-IQ scheme using the Dimtel LLRF4 card Bob Anderson.
CERN LHC RF Power Systems
Electronic workshop for Si-W ECAL
RF acceleration and transverse damper systems
LHC RF Embedded SC Cavity Conditioning System
Introduction to Programmable Logic
Lock-in amplifiers
LLRF: M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J
Software Defined Radio Expanded
Field Programmable Gate Array
Field Programmable Gate Array
Field Programmable Gate Array
A Comparison of Field Programmable Gate
DSP Audio Effects using Stochastic Computing
Developing a multi-thread product -- Introduction
Update on transient beam loading at injection
Presentation transcript:

Complex Digital Circuit Design for LHC Low Level RF John Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Presentation Design Flow Overview FPGA Design Tools PCB Related Tools Implementations Digital Signal Treatment Modules General Controls Modules Acquisition Examples Tuner Calibrate Sweep Tuner Stepping Noise Observation LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Design Flow Overview 1/2 FPGA LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Visual Elite Advantages Visual Elite tool Generates Device independent portable VHDL code. Code reusability Graphical Design Builder Graphics to text, text to graphics conversion Powerful auto-documenting creates html Disadvantages Need a synthesizer AND the FPGA dev. Sys. Multiple work directories, more complex environment Need to include Device / Vendor specific library if device specific features are required (reducing portability) LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Design Flow Overview 2/2 PCB LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Presentation Design Flow Overview FPGA Design Tools PCB Related Tools Implementations Digital Signal Treatment Modules General Controls Modules Acquisition Examples Tuner Calibrate Sweep Tuner Stepping Noise Observation LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Tuner Loop Module [7],[8] Vacc Reference Channel & IcFwd Channel 80MSPS 40MSPS 2.5MSPS 9.766kSPS \ 1.22kSPS FPGA: XC2V2000-6FG676C DSP: ADSP TS101S BGA625 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Tuner Loop Module LLRF05 J.Molendijk CERN AB/RF/cs

Digital I/Q Demodulator 1/2 [1] LLRF05 J.Molendijk CERN AB/RF/cs

Digital I/Q Demodulator 2/2 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Phase Rotator LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs 2 Stage CIC16 2/2 [3] Resource economic solution for decimating filters. Rise-time = 0.9 μs to allow LHC abort gap to remain visible LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs 2 Stage CIC16 2/2 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Power Product LLRF05 J.Molendijk CERN AB/RF/cs

Cross Product as Phase Discri u x v = ux vy – uy vx |u x v| = |u| x |v| sinθ = ε IcFwd u = Vacc, v = IcFwd LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs MinMax LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Decimating LPF256 Cascade of CIC16_2, 2x F2, F3 & F5. calculates average |Vacc|^2 over an LHC turn. Design according to Goodman and Carey [2], [3] Rise-time = 200 μs ~ -60dB at LHC Frev of 11kHz LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs F3 Halfband filter 1/2 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs F3 Halfband Filter 2/2 Pipeline Registers LLRF05 J.Molendijk CERN AB/RF/cs

Variable Rate Integrating filter for Observation Buffer Bgrow = n LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Limiting Adder Xor Xnor LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Presentation Design Flow Overview FPGA Design Tools PCB Related Tools Implementations Digital Signal Treatment Modules General Controls Modules Acquisition Examples Tuner Calibrate Sweep Tuner Stepping Noise Observation LLRF05 J.Molendijk CERN AB/RF/cs

Read Modify Write Register A Read Modify Write Register avoids data corruption if control register bits are used by different threads. The register is updated in 1 single access cycle. LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs LFSR Counter 1/2 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs LFSR Counter 2/2 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Presentation Design Flow Overview FPGA Design Tools PCB Related Tools Implementations Digital Signal Treatment Modules General Controls Modules Acquisition Examples Tuner Calibrate Sweep Tuner Stepping Noise Observation LLRF05 J.Molendijk CERN AB/RF/cs

Tuner Calibration Sweep Output buffer |Vacc|2 & εIcFwd acquired with Tsample = 1.635 ms, buffer length = 13.4s Q = 60k Pfwd = 100kW F = 400.789 MHz Vcav @ resonance ~1.5MV Ratio Scale Ratio = εIcFwd / Vacc2 Quantization effects in the Denominator LLRF05 J.Molendijk CERN AB/RF/cs

Tuner Stepping, Noise Observation Output buffer |Vacc2| & εIcFwd. Tsample = 1.635 ms, buffer length = 13.4s 1 Step ~25Hz Steady Tuned Condition, only 4 tuning steps (back and forth) over 13.4s. Slow Ratio drift phenomena probably due to He fluctuations. 144 Hz ringing after a step probably due to Mechanical cavity resonance. LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs References Digital I/Q demodulator [1] Ziomek, C. and Corredoura, P: “Digital I/Q Demodulator” PAC’95 CIC and Halfband filter design [2] D.J. Goodman, M.J. Carey: “Nine Digital Filters for Decimation abd Interpolation,” IEEE transactions on acoustics, and signal processing, vol. ASSP-25, No. 2, April 1977 [3] Uwe Meyer-Baese: “Digital Signal Processing with Field Programmable Gate Arrays”. Principles of LHC Tuner Loop [4] P. Baudrenghien: “Principles of the LHC Tuner Loop” (in work) LFSR [5] http://direct.xilinx.com/bvdocs/appnotes/xapp052.pdf [6] http://en.wikipedia.org/wiki/LFSR LHC Tuner Loop Module Hardware https://edms.cern.ch -> Global Database -> Search [7] LHC Tuner RF Front-end EDA-00331 [8] LHC Tuner Control card EDA-00572 LLRF05 J.Molendijk CERN AB/RF/cs

LLRF05 J.Molendijk CERN AB/RF/cs Software Visual Elite (Summit) Synplify (Synplicity) ISE (Xilinx) Quartus (Altera) Concept, PartDeveloper, Allegro, Spectra Quest, NC-sim (Cadence) LLRF05 J.Molendijk CERN AB/RF/cs