May 03 2007 | pag. 1 Wandering in superspace From Stony Brook to Belgium Alexander Sevrin Vrije Universiteit Brussel and The International Solvay Institutes.

Slides:



Advertisements
Similar presentations
Type IIB Supergravity, D3 branes and ALE manifolds
Advertisements

Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Cosmic Billiards are fully integrable: Tits Satake projections and Kac Moody extensions Talk by Pietro Frè at Corfu 2005”
11 3d CFT and Multi M2-brane Theory on M. Ali-Akbari School of physics, IPM, Iran [JHEP 0903:148,2009] Fifth Crete regional meeting in string theory Kolymbari,
Pietro Fré Dubna July 2003 ] exp[ / Solv H
Vincent Rodgers © Vincent Rodgers © Courant brackets are a framework for describing new string.
Heterotic strings and fluxes Based on: K. Becker, S. Sethi, Torsional heterotic geometries, to appear. K. Becker, C. Bertinato, Y-C. Chung, G. Guo, Supersymmetry.
D=6 supergravity with R 2 terms Antoine Van Proeyen K.U. Leuven Dubna, 16 December 2011 collaboration with F. Coomans, E. Bergshoeff and E. Sezgin.
Lecture 2. Correction Stockinger, - SUSY skript, Drees, Godbole, Roy - "Theory and.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Rigid SUSY in Curved Superspace Nathan Seiberg IAS Festuccia and NS Thank: Jafferis, Komargodski, Rocek, Shih.
Boundaries in Rigid and Local Susy Dmitry V. Belyaev and Peter van Nieuwenhuizen.
Lecture 4. Before Christmas… 1.2 SUSY Algebra (N=1) From the Haag, Lopuszanski and Sohnius extension of the Coleman-Mandula theorem we need to introduce.
Fermions and the Dirac Equation In 1928 Dirac proposed the following form for the electron wave equation: The four  µ matrices form a Lorentz 4-vector,
Happy 120 th birthday. Mimeograph Constraining Goldstinos with Constrained Superfields Nathan Seiberg IAS Confronting Challenges in Theoretical Physics.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Supersymmetry in Particle Physics
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
Conformal higher-spin fields in (super) hyperspace Dmitri Sorokin INFN, Padova Section Based on arXiv: , with Ioannis Florakis (CERN)
Kirill Polovnikov* Anton Galajinsky* Olaf Lechtenfeld** Sergey Krivonos*** * Laboratory of Mathematical Physics, Tomsk Polytechnic University ** Institut.
Jan KalinowskiSupersymmetry, part 1 SUSY 1 Jan Kalinowski.
Exact Supersymmetry on the Lattice Noboru Kawamoto (Hokkaido University) CFT and Integrability In memory of Alexei Zamolodchikov Dec.18, Seoul.
(Hokkaido University)
Superconformal symmetry and higher-derivative Lagrangians Antoine Van Proeyen KU Leuven Mc Gill university, workshop in honour of Marc Grisaru April 19,
HOLOGRAPHY, DIFFEOMORHISMS, AND THE CMB Finn Larsen University of Michigan Quantum Black Holes at OSU Ohio Center for Theoretical Science September
GENERAL PRINCIPLES OF BRANE KINEMATICS AND DYNAMICS Introduction Strings, branes, geometric principle, background independence Brane space M (brane kinematics)
Center for theoretical Physics at BUE
Higher Derivative Scalars in Supergravity Jean-Luc Lehners Max Planck Institute for Gravitational Physics Albert Einstein Institute Based on work with.
S. Bellucci a S. Krivonos b A.Shcherbakov a A.Sutulin b a Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy b Bogoliubov Laboratory.
D-term Dynamical Supersymmetry Breaking K. Fujiwara and, H.I. and M. Sakaguchi arXiv: hep-th/ , P. T. P. 113 arXiv: hep-th/ , N. P. B 723 H.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
Higher-Spin Geometry and String Theory Augusto SAGNOTTI Universita’ di Roma “Tor Vergata” QG05 – Cala Gonone, September, 2005 Based on: Francia, AS, hep-th/ ,, ,
Tachyon-Dilaton driven Inflation as an α'-non perturbative solution in first quantized String Cosmology Anna Kostouki, King’s College London DISCRETE ’08,
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
The embedding-tensor formalism with fields and antifields. Antoine Van Proeyen K.U. Leuven Moscow, 4th Sakharov conf., May 21, 2009.
Solvable Lie Algebras in Supergravity and Superstrings Pietro Fré Bonn February 2002 An algebraic characterization of superstring dualities.
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
Matrix Cosmology Miao Li Institute of Theoretical Physics Chinese Academy of Science.
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Lecture 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA.
Laboratoire Charles Coulomb
2 Time Physics and Field theory
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
The inclusion of fermions – J=1/2 particles
Takaaki Nomura(Saitama univ)
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
Dmitri Sorokin, INFN Padova Section based on arXiv: with I. Bandos, L. Martucci and M. Tonin VII Round Table Italy-Russia, Dubna, November.
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
Lecture 3. (Recap of Part 2) Dirac spinor 2 component Weyl spinors Raising and lowering of indices.
Supersymmetric three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP)
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Intro to SUSY II: SUSY QFT Archil Kobakhidze PRE-SUSY 2016 SCHOOL 27 JUNE -1 JULY 2016, MELBOURNE.
Takaaki Nomura(Saitama univ)
Exceptional Flux Compactifications
Unitary Spherical Super-Landau Models Andrey Beylin
3d CFT and Multi M2-brane Theory on
Current Status of Exact Supersymmetry on the Lattice
Presentation transcript:

May | pag. 1 Wandering in superspace From Stony Brook to Belgium Alexander Sevrin Vrije Universiteit Brussel and The International Solvay Institutes

40 May | pag. 2 Memories The CNY Stony Brook, the Ellis Island for European theoretical physicists… First encounter with PvN: Trieste Spring School in 1986… August 1988: start of postdoc career in Stony Brook. Starting with the book, numerous collaborations later on! August 1991: leaving for the West Coast…(just missed hurricane Bob but found my wife).

40 May | pag. 3 Memories Stony Brook = great time The Italian house The parties with the music department The numerous scientific – and sometimes not so scientific – discussions with Barry, Bill, Frank, Fred, George, Jack, Martin, Peter, Robert, Vladimir & Warren. Peter’s Friday seminars… Dinners with Marie, Peter & the kids… Sailing on the Sound and further away… … Thank you!!! Hopefully I brought back some of the Stony Brook spirit to Belgium and passed it on to my students…

40 May | pag. 4 Introduction A bit of Stony Brook physics: the off-shell description and geometry of supersymmetric non-linear sigma models in two dimensions… An almost solved problem…

40 May | pag. 5 Supersymmetry Supersymmetry (susy) = extension of the Poincaré group ( translations P & Lorentz transformations M) with a number of fermionic transformations (Q). Note: different from susy in nuclear or statistical physics. [ P ; P ] = 0 [ M ; P ] = P [ M ; M ] = M [ P ; Q ] = 0 [ M ; Q ] = Q f Q ; Q g = P

40 May | pag. 6 Supersymmetry Representations of the supersymmetry algebra –All particles in a single irrep have the same mass –There are an equal number of bosons and fermionic degrees of freedom in a single irrep. E.g. chiral multiplet in 4 dimensions: one complex scalar (2 propagating bosonic dof) and one chiral spinor (2 propagating fermionic dof).

40 May | pag. 7 Supersymmetry Simple example in d=1, scalar and spinor. Transformations: Algebra: Invariant action: ±Á = i " à ±Ã = ¡ " _ Á Á ( ¿ ) à ( ¿ ) [ ± ( " 1 ) ; ± ( " 2 )] Á = 2 i " 1 " 2 _ Á [ ± ( " 1 ) ; ± ( " 2 )] à = 2 i " 1 " 2 _ à S = 1 2 Z d ¿ ³ _ Á _ Á + i à _ à ´

40 May | pag. 8 Superspace Supersymmetry as a coordinate transformation? (Salam & Strathdee) –Simple d=1 example, introduce superspace, one bosonic coordinate and one fermionic (anticommuting) coordinate. Supersymmetry = translation of the fermionic coordinate? Transformation on the bosonic coordinate determined by supersymmetry algebra, ¿ µ ; µ 2 = 0 ±µ = ¡ " ± ¿ = i µ "

40 May | pag. 9 Superspace –Fields become superfields. E.g. scalar superfield, Transforms as a scalar, which becomes explicitely, or in components: © ( ¿ ; µ ) = Á ( ¿ ) + i µÃ ( ¿ ) ±Á = i " à ±Ã = ¡ " _ Á © ( ¿ ; µ ) ! © 0 ( ¿ 0 ; µ 0 ) = © ( ¿ ; µ ) © 0 ( ¿ 0 ; µ 0 ) = © 0 ( ¿ + ± ¿ ; µ + ±µ ) = © 0 ( ¿ ; µ ) ¡ i " à ( ¿ ) + i µ " _ Á ( ¿ )

40 May | pag. 10 Superspace –Introduce fermionic derivative, –Introduce fermionic integral, –Manifestly invariant action, ¡ ¿ ; D 2 = ¿ S = i 2 Z d ¿ dµ _ ©D© = i 2 Z d ¿ ³ ¡ i _ © _ © + D _ ©D© ´ ¯ ¯ µ ! 0 = 1 2 Z d ¿ ³ _ Á _ Á + i à _ à ´ R dµ F ( ¿ ; µ ) ´ DF ( ¿ ; µ ) ¯ ¯ µ = 0

40 May | pag. 11 Superspace –If you want to know more about superspace, read the bible: S.J. Gates, Marcus T. Grisaru, M. Roček, W. Siegel: SUPERSPACE OR ONE THOUSAND AND ONE LESSONS IN SUPERSYMMETRY: HEP-TH

40 May | pag. 12 Strings –The position of a string is described by –Geometry target manifold characterized by metric and closed 3- form. –Supersymmetric non-linear sigma-models in two dimensions have deep roots in Stony Brook…. X a ( ¾ 0 ; ¾ 1 ) ; ¾ 0 2 R ; ¾ 1 2 [ 0 ; 2 ¼ ] ; a 2 f 1 ; ¢¢¢ ; D g X a ( ¾ 0 ; ¾ ¼ ) = X a ( ¾ 0 ; ¾ 1 )

40 May | pag. 13 Strings –Luis Alvarez-Gaume, Daniel Z. Freedman, GEOMETRICAL STRUCTURE AND ULTRAVIOLET FINITENESS IN THE SUPERSYMMETRIC SIGMA MODEL, CMP 80:443,1981, cited 397 times. –S.J. Gates, Jr., C.M. Hull, M. Ro č ek, TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NONLINEAR SIGMA MODELS, NPB 248:157,1984, cited 402 times. –T. Buscher, U. Lindström, M. Ro č ek, NEW SUPERSYMMETRIC SIGMA MODELS WITH WESS-ZUMINO TERMS, PLB 202:94,1988, cited 47 times. –M. Ro č ek, K. Schoutens, A. Sevrin, OFF-SHELL WZW MODELS IN EXTENDED SUPERSPACE, PLB 265:303,1991, cited 86 times. –Ulf Lindström, Martin Ro č ek, Rikard von Unge, Maxim Zabzine, GENERALIZED KAHLER MANIFOLDS AND OFF-SHELL SUPERSYMMETRY, CMP 269: ,2007; [HEP-TH ], cited 24 times. –Ulf Lindström, Martin Ro č ek, Rikard von Unge, Maxim Zabzine, LINEARIZING GENERALIZED KAHLER GEOMETRY, JHEP 0704:061,2007, [HEP-TH ], cited 3 times.

40 May | pag. 14 Susy sigma-models Supersymmetrize the sigma-model –Introduce fermions through N=(1,1) susy transformations: –Construct invariant action and complete transformation rules S = ¡ 1 2 Z d 2 ¾ ¡ ( G a b + B a b = j X = X b + i g a b à a + r ( + ) = à b + + i g a b à a ¡ r ( ¡ ) = j à b ¡ R ( ¡ ) a b c d à a ¡ à b ¡ à c + à d + ¢ ± X a = i " + à a + + i " ¡ à a ¡ ; ±Ã a + = ¡ " = j X a + :::; ±Ã a ¡ = ¡ " = X a + ::::

40 May | pag. 15 Susy sigma-models –Transformation rules: –Algebra closes on-shell: ± X a = i " + à a + + i " ¡ à a ¡ ; ±Ã a + = ¡ " = j X a + i " ¡ ¡ a ( + ) b c à b + à c ¡ ; ±Ã a ¡ = ¡ " = X a + i " + ¡ a ( ¡ ) b c à b ¡ à c + : [ ± ( " + 1 ) ; ± ( " + 2 )] à a ¡ = 2 i " + 1 " + = j à a ¡ ¡ 2 i " + 1 " + 2 ¡ r = j à a ¡ ¡ i 2 R a ( ¡ ) b c d à b ¡ à c + à d + ¢

40 May | pag. 16 Susy sigma-models –How to find model independent representation? Solution: auxiliary fields! Off-shell degrees of freedom: D bosonic and 2 D fermionic, add D bosonic auxiliary fields to balance: –Off-shell closure: F a ± X a = i " + à a + + i " ¡ à a ¡ ; ±Ã a + = ¡ " = j X a ¡ " ¡ F a ; ±Ã a ¡ = ¡ " = X a + " + F a ; ± F a = ¡ i " = j à a ¡ + i " = à a + : [ ± ( " + 1 ) ; ± ( " + 2 )] = 2 i " + 1 " + = j ; [ ± ( " ¡ 1 ) ; ± ( " ¡ 2 )] = 2 i " ¡ 1 " ¡ = ; [ ± ( " + ) ; ± ( " ¡ )] = 0 :

40 May | pag. 17 Susy sigma-models –The invariant action, –Eom for auxiliary field: Implementing this in action and transformation rules gives back original situation. –Finding auxilairy fields is a notoriously difficult problem (Stony Brook has a long tradition…)! F a = i ¡ a ( ¡ ) b c à b ¡ à c +

40 May | pag. 18 Susy sigma-models N=(1,1) superspace –Introduce fermionic coordinates, and, –Introduce superfields: – Action: µ + µ ¡ µ + µ + = µ ¡ µ ¡ = 0 µ + µ ¡ = ¡ µ ¡ µ + X a ( ¾ = j ; ¾ = ; µ + ; µ ¡ ) = X a + i µ + Ã a + + i µ ¡ Ã a ¡ + i µ + µ ¡ F a S = ¡ 1 2 R d 2 ¾ d 2 µ ¡ G a b + B a b ´ D + X a D ¡ X b

40 May | pag. 19 N=(2,2) sigma-models Introduction –Passing from the bosonic non-linear sigma-model to the N=(1,1) supersymmetric model did not give rise to any extra conditions. The geometry is still fully characterized by a manifold, a metric and a closed 3-form. –Description of type II superstrings requires two left-handed and two right-handed supersymmetries (  space-time susy): Here: compactified sector  Euclidean signature T a b c = ¡ 1 2 a B b c b B ca c B a b ¢ G a b N = ( 1 ; 1 ) ) N = ( 2 ; 2 )

40 May | pag. 20 N=(2,2) sigma-models More supersymmetry –Dimensional analysis extra susy has the form: –The transformation rules satisfy on-shell susy algebra  → almost complex structure: → integrability: Nijenhuis tensor: –The susy algebra closes off-shell as well  ) ± X a = " + J a + b ( X ) D + X b + " ¡ J a ¡ b ( X ) D ¡ X b J + 2 = J ¡ 2 = ¡ 1 N [ J + ; J + ] = N [ J ¡ ; J ¡ ] = 0 N [ J + ; J ¡ ] = 0 [ J + ; J ¡ ] = 0 N a b c [ A ; B ] ´ A d [ b B a c ] ; d + A a d B d [ b ; c ] + A $ B

40 May | pag. 21 N=(2,2) sigma-models –The algebra works, what about invariance? Action invariant  → metric is hermitean: → complex structures are covariantly constant: –Conclusion: passing from N=(1,1) to N=(2,2), a lot of extra data/requirements, bihermitean complex manifold with covariantly constant complex structures. What is the geometry? J c § a J d § b G c d = G a b r ( § ) c J a § b = 0

40 May | pag. 22 N=(2,2) superspace –Introduce 4 fermionic coordinates, and. Introduce 4 fermionic derivatives as well, and, All other anti-commutators vanish. –Integration measure,, is dimensionless. So lagrange density is a function of scalar (super)fields → geometry characterized by a potential! How do we get dynamics? –Answer: impose constraints on the superfields! Basic superfields: chiral, twisted chiral and semi-chiral superfields. µ § ^ µ § D § ^ D § R d 2 ¾ d 2 µd 2 ^ µ D + 2 = ¡ = j ; D ¡ 2 = ¡ = ; ^ D + 2 = ¡ = j ; ^ D ¡ 2 = ¡ =

40 May | pag. 23 N=(2,2) superspace –Note: –General solution: (Lindstrom, Roček, Von Unge, Zabzine; Troost, AS; Bogaerts, AS, van der Loo, Van Gils; Ivonov, Kim, Roček; …) k er [ J + ; J ¡ ] = k er ( J + ¡ J ¡ ) © k er ( J + + J ¡ ) k er ( J + ¡ J ¡ ) © k er ( J + + J ¡ ) © co k er [ J + ; J ¡ ] Chiral superfields Twisted-chiral superfields Semi-chiral superfields

40 May | pag. 24 N=(2,2) superspace –Some examples: Only chiral fields: all Kähler manifolds where one chooses. Chiral and twisted-chiral: WZW model on (Roček, Schoutens, AS) Semi-chirals only: hyper-Kähler where, and (AS, Troost; Lindström, Roček, von Unge, Zabzine) Mixed cases:, (Ivanov, Kim, Roček; AS, Troost) + all WZW. (Roček, Schoutens, AS) …. J + = J ¡ SU ( 2 ) £ U ( 1 ) » = S 3 £ S 1 J + = J 1 J ¡ = J 2 f J 1 ; J 2 g = 0 SU ( 2 ) £ SU ( 2 )

40 May | pag. 25 N=(2,2) superspace –Chiral and twisted chiral fields are the basic ingredients, semi-chiral fields can be obtained through quotient construction involving only chiral and twisted chiral fields (Lindstrom, Roček, von Unge, Zabzine) 2.

40 May | pag. 26 Outlook NS-NS fluxes are perhaps the simplest to study. Geometric framework is more or less ready… General case strikingly similar to Kahler case, a lot to explore… Extension to case with boundaries (D-branes), work in progress (AS, Staessens, Wijns): –Boundary at either (B-type boundary conditions) or (A-type boundary conditions) (Ooguri, Oz, Yin) ¾ = 0 ; µ + ¡ µ ¡ = ^ µ + ¡ ^ µ ¡ = 0 ¾ = 0 ; µ + ¡ µ ¡ = ^ µ + + ^ µ ¡ = 0

40 May | pag. 27 Outlook Super Poincaré invariance broken  N=(2,2) → N=2 supersymmetry  N=2 boundary superspace. Choice of boundary conditions = choice of superfield content. E.g.: –A-branes on Kähler manifold = B boundary conditions with only twisted chiral superfields. –B-branes on Kähler manifold = B boundary conditions with only chiral superfields. Starting point (Lindström, Roček, van Nieuwenhuizen; Koerber, Nevens, AS): + boundary conditions (non-trivial for twisted chiral). S = R d 2 ¾ d 2 µ D 0 ^ D 0 V ( X ; ¹ X ) + i R d ¿ d 2 µ W ( X ; ¹ X )

40 May | pag. 28 Outlook In presence of isometries, chiral ↔ twisted chiral duality persists!!!  mirror symmetry and more… Previous  important tool for the explicit construction of lagrangian and coisotropic D-brane configurations (model building (Font, Ibanez, Marchesano)). Subtle and intricate (Kapustin)!

40 May | pag. 29 Outlook Without boundaries: fully controlled, with boundaries: probably fully under control as well. If RR-backgrounds could only be incorporated… (Berkovits). Dilaton ↔ N=(2,2) or N=2 supergravity. Alpha’ corrections Extremely nice example of a situation where off-shell susy is fully understood! A lot of physics and mathematics results are still waiting! HAPPY BIRTHDAY CNY ITP!