Solubility Equilibria

Slides:



Advertisements
Similar presentations
SOLUBILITY Saturated Solution BaSO 4(s)  Ba 2+ (aq) + SO 4 2- (aq) Equilibrium expresses the degree of solubility of solid in water. Equilibrium expresses.
Advertisements

Solubility Equilibria AP Chemistry
Hall © 2005 Prentice Hall © 2005 General Chemistry 4 th edition, Hill, Petrucci, McCreary, Perry Chapter Sixteen 1 More Equilibria in Aqueous Solutions:
SCH 3U1 1. Solubility of Ionic Compounds 2 All solutes will have some solubility in water. “Insoluble” substances simply have extremely low solubility.
Solubility. Definition Q. How do you measure a compound’s solubility? A. The amount of that compound that will dissolve in a set volume of water. This.
Precipitation Equilibrium
1 Solubility Equilibria Solubility Product Constant K sp for saturated solutions at equilibrium.
Aqueous Equilibria Entry Task: Feb 28 th Thursday Question: Provide the K sp expression for calcium phosphate, K sp = 2.0 x From this expression,
The Solubility Product Principle. 2 Silver chloride, AgCl,is rather insoluble in water. Careful experiments show that if solid AgCl is placed in pure.
The K sp of chromium (III) iodate in water is 5.0 x Estimate the molar solubility of the compound. Cr(IO 3 ) 3 (s)  Cr 3+ (aq) + 3 IO 3 - (aq)
Chapter 16: Aqueous Ionic Equilibria Common Ion Effect Buffer Solutions Titrations Solubility Precipitation Complex Ion Equilibria.
Solubility Rules.
Solubility Equilibria
PRECIPITATION REACTIONS Chapter 17 Part 2 2 Insoluble Chlorides All salts formed in this experiment are said to be INSOLUBLE and form precipitates when.
A salt, BaSO4(s), is placed in water
Ksp and Solubility Equilibria
© 2009, Prentice-Hall, Inc. Solubility of Salts (Ksp) Consider the equilibrium that exists in a saturated solution of BaSO 4 in water: BaSO 4 (s) Ba 2+
1 Solubility Equilibria all ionic compounds dissolve in water to some degree –however, many compounds have such low solubility in water that we classify.
Chapter 18 Solubility and Complex-Ion Equilibria
Solubility Equilibrium
Precipitates and Solubility
Chapter 18 Solubility. Equilibria of Slightly Soluble Ionic Compounds Explore the aqueous equilibria of slightly soluble ionic compounds. Chapter 5. Precipitation.
LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental processes that are reversible,
Predicting Products: The Activity Series & Solubility Rules.
Solubility Allows us to flavor foods -- salt & sugar. Solubility of tooth enamel in acids. Allows use of toxic barium sulfate for intestinal x-rays.
PRECIPITATION REACTIONS
Copyright Sautter SOLUBILITY EQUILIBRIUM Solubility refers to the ability of a substance to dissolve. In the study of solubility equilibrium we.
Chapter 18 The Solubility Product Constant. Review Quiz Nuclear Chemistry Thermochemistry –Hess’s Law –Heats (Enthalpies) of…
Solubility Equilibria
Dressen.  Understand the dynamics of a dissolving substance.  Be able to construct a K sp equlibrium expression (solubility product constant).  Be.
Aqueous Equilibria Chapter 17 Additional Aspects of Aqueous Equilibria You love Chemistry You might have doubts, but deep, deep, deep down you know there.
Solubility Chapter 17. No only do acids and bases dissolve in aqueous solutions but so do ionic compounds –Many ionic compounds tend to be strong electrolytes.
K sp and Solubility Equilibria. Saturated solutions of salts are another type of chemical equilibrium. Slightly soluble salts establish a dynamic equilibrium.
1 Solubility Equilibria all ionic compounds dissolve in water to some degree –however, many compounds have such low solubility in water that we classify.
Topic 14: Solubility AP Chemistry Mrs. Laura Peck, 2013
Solubility & SOLUBILITY PRODUCT CONSTANTS. Solubility Rules All Group 1 (alkali metals) and NH 4 + compounds are water soluble. All nitrate, acetate,
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Solubility Equilibrium TEXT REFERENCE Masterton and Hurley Chapter 16.1.
 Determine the type of reaction and predict the products: NaOH  Li + Br 2  C 2 H 4 + O 2 
Solubility Rules. The terms soluble and insoluble are relative terms. soluble insoluble solute Solubility: the maximum amount of solute needed to make.
Solubility Equilibria 16.6 AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ]K sp is the solubility product constant MgF 2 (s) Mg 2+ (aq) + 2F - (aq)
Solubility Equilibrium Solubility Product Constant Ionic compounds (salts) differ in their solubilities Most “insoluble” salts will actually dissolve.
Solubility Equilibria Ksp
Solubility. John A. Schreifels Chemistry 212 Chapter 12-2 Types of Solution n Solution – homogeneous mixture of two or more substances of ions or molecules.
Solubility Equilibria
Solubility Equilibria
DO NOW: What is dissolution. What is precipitation
1) C + H 2 → C 3 H 8 2) C 6 H 12 + O 2 → H 2 O + CO 2 3) NaI + Pb(SO 4 ) 2 → PbI 4 + Na 2 SO 4 4) HgI 2 + O 2 → HgO + I 2 5)List the 7 diatomic molecules.
SOLUBILITY I. Saturated Solution BaSO 4(s)  Ba 2+ (aq) + SO 4 2- (aq) Equilibrium expresses the degree of solubility of solid in water. Ksp = solubility.
Ionic Equilibrium When a slightly soluble or insoluble salt is mixed with water, a saturated solution quickly results and a dynamic equilibrium.
CHE1102, Chapter 17 Learn, 1 Chapter 17 Solubility and Simultaneous Equilibria.
Solubility Equilibria. Do we all pee?  Nitrogenous wastes are dangerous to any animal, and need to be removed… but the way we excrete them is very different.
Unit 13: Solutions.  Solution - homogeneous mixture Solvent – substance that dissolves the solute Solute - substance being dissolved.
Previous Knowledge – 30S Chem – Solutions, Unit 1, and Equilibrium Content – p
E 12 Water and Soil Solve problems relating to removal of heavy –metal ions and phosphates by chemical precipitation
Solubility Equilibria.  Write a balanced chemical equation to represent equilibrium in a saturated solution.  Write a solubility product expression.
Acid-Base Equilibria and Solubility Equilibria Chapter 16.
SOLUBILITY – The maximum amount of solute that will dissolve in a specific amount of solvent EQUILIBRIA WITH SALTS SATURATED – A solution where the solid.
Will it all dissolve, and if not, how much?. Looking at dissolving of a salt as an equilibrium. If there is not much solid it will all dissolve. As more.
Solubility Equilibria Will it all dissolve, and if not, how much will?
K sp and the Solubility Product Constant. K sp The Solubility Product Constant The study of __________ _________ compounds.
Chapter 16 Solubility Equilibria. Saturated solutions of “insoluble” salts are another type of chemical equilibria. Ionic compounds that are termed “insoluble”
Chapter 17 Solubility and Simultaneous Equilibria
Why Do Some Solids Dissolve in Water?
Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Precipitation Equilibrium
A salt, BaSO4(s), is placed in water
Solubility Product Constant (Ksp)
Ksp and Solubility Equilibria
Solubility Equilibria
Presentation transcript:

Solubility Equilibria

Chem 30S Review…Solubility Rules Salts are generally more soluble in HOT water (Gases are more soluble in COLD water) Alkali Metal salts are very soluble in water. NaCl, KOH, Li3PO4, Na2SO4 etc... Ammonium salts are very soluble in water. NH4Br, (NH4)2CO3 etc… Salts containing the nitrate ion, NO3-, are very soluble in water. Most salts of Cl-, Br- and I- are very soluble in water - exceptions are salts containing Ag+ and Pb2+. soluble salts: FeCl2, AlBr3, MgI2 etc... “insoluble” salts: AgCl, PbBr2 etc...

Dissolving a salt... A salt is an ionic compound - usually a metal cation bonded to a non-metal anion. The dissolving of a salt is an example of equilibrium. The cations and anions are attracted to each other in the salt. They are also attracted to the water molecules. The water molecules will start to pull out some of the ions from the salt crystal.

At first, the only process occurring is the dissolving of the salt - the dissociation of the salt into its ions. However, soon the ions floating in the water begin to collide with the salt crystal and are “pulled back in” to the salt. (precipitation) Eventually the rate of dissociation is equal to the rate of precipitation. The solution is now “saturated”. It has reached equilibrium.

Solubility Equilibrium: Dissociation = Precipitation In a saturated solution, there is no change in amount of solid precipitate at the bottom of the beaker. Concentration of the solution is constant. The rate at which the salt is dissolving into solution equals the rate of precipitation. Na+ and Cl - ions surrounded by water molecules NaCl Crystal Dissolving NaCl in water

Dissolving silver sulfate, Ag2SO4, in water When silver sulfate dissolves it dissociates into ions. When the solution is saturated, the following equilibrium exists: Ag2SO4 (s)  2 Ag+ (aq) + SO42- (aq) Since this is an equilibrium, we can write an equilibrium expression for the reaction: Ksp = [Ag+]2[SO42-] Notice that the Ag2SO4 is left out of the expression! Why? Since K is always calculated by just multiplying concentrations, it is called a “solubility product” constant - Ksp.

Writing solubility product expressions... For each salt below, write a balanced equation showing its dissociation in water. Then write the Ksp expression for the salt. Iron (III) hydroxide, Fe(OH)3 Nickel sulfide, NiS Silver chromate, Ag2CrO4 Zinc carbonate, ZnCO3 Calcium fluoride, CaF2 Try Problems 1 - 8

Some Ksp Values Note: These are experimentally determined, and may be slightly different on a different Ksp table.

Calculating Ksp of Silver Chromate A saturated solution of silver chromate, Ag2CrO4, has [Ag+] = 1.3 x 10-4 M. What is the Ksp for Ag2CrO4? Ag2CrO4 (s)  2 Ag+ (aq) + CrO42- (aq) ---- ---- 1.3 x 10-4 M Ksp = [Ag+]2[CrO42-] Ksp = (1.3 x 10-4 )2 (6.5 x 10-5) = 1.1 x 10-12

Calculating the Ksp of silver sulfate The solubility of silver sulfate is 0.014 mol/L. This means that 0.0144 mol of Ag2SO4 will dissolve to make 1.0 L of saturated solution. Calculate the value of the equilibrium constant, Ksp for this salt. Ag2SO4 (s)  2 Ag+ (aq) + SO42- (aq) --- --- + 2s + s 2s s Ksp = [Ag+]2[SO42-] = (2s)2(s) = (4s2)(s) = 4s3 We know: s = 0.0144 mol/L Ksp = 4(0.0144)3 = 1.2 x 10-5

Calculating solubility, given Ksp The Ksp of NiCO3 is 1.4 x 10-7 at 25°C. Calculate its molar solubility. NiCO3 (s)  Ni2+ (aq) + CO32- (aq) --- --- + s + s s s Ksp = [Ni2+][CO32-] 1.4 x 10-7 = s2 s = = 3.7 x 10-4 M

Other ways to express solubility... We just saw that the solubility of nickel (II) carbonate is 3.7 x 10-4 mol/L. What mass of NiCO3 is needed to prepare 500 mL of saturated solution? 0.022 g of NiCO3 will dissolve to make 500 mL solution.

MgF2 (s)  Mg2+ (aq) + 2 F- (aq) Calculate the solubility of MgF2 in water. What mass will dissolve in 2.0 L of water? MgF2 (s)  Mg2+ (aq) + 2 F- (aq) ---- ---- + s + 2s s 2s Ksp = [Mg2+][F-]2 = (s)(2s)2 = 4s3 Ksp = 7.4 x 10-11 = 4s3 s = 2.6 x 10-4 mol/L

AgOH (s)  Ag+ (aq) + OH- (aq) Solubility and pH Calculate the pH of a saturated solution of silver hydroxide, AgOH. Refer to the table in your booklet for the Ksp of AgOH. AgOH (s)  Ag+ (aq) + OH- (aq) ---- ---- + s + s s s Ksp = 2.0 x 10-8 = [Ag+][OH-] = s2 s = 1.4 x 10-4 M = [OH-] pOH = - log (1.4 x 10-4) = 3.85 pH = 14.00 - pOH = 10.15

The Common Ion Effect on Solubility The solubility of MgF2 in pure water is 2.6 x 10-4 mol/L. What happens to the solubility if we dissolve the MgF2 in a solution of NaF, instead of pure water?

Calculate the solubility of MgF2 in a solution of 0.080 M NaF. MgF2 (s)  Mg2+ (aq) + 2 F- (aq) ---- 0.080 M + s + 2s s 0.080 + 2s Ksp = 7.4 x 10-11 = [Mg2+][F-]2 = (s)(0.080 + 2s)2 Since Ksp is so small…assume that 2s << 0.080 7.4 x 10-11 = (s)(0.080)2 s = 1.2 x 10-8 mol/L

Explaining the Common Ion Effect The presence of a common ion in a solution will lower the solubility of a salt. LeChatelier’s Principle: The addition of the common ion will shift the solubility equilibrium backwards. This means that there is more solid salt in the solution and therefore the solubility is lower!

Ksp and Solubility Generally, it is fair to say that salts with very small solubility product constants (Ksp) are only sparingly soluble in water. When comparing the solubilities of two salts, however, you can sometimes simply compare the relative sizes of their Ksp values. This works if the salts have the same number of ions! For example… CuI has Ksp = 5.0 x 10-12 and CaSO4 has Ksp = 6.1 x 10-5. Since the Ksp for calcium sulfate is larger than that for the copper (I) iodide, we can say that calcium sulfate is more soluble.

But be careful... Do you see the “problem” here??

Mixing Solutions - Will a Precipitate Form? If 15 mL of 0.024-M lead nitrate is mixed with 30 mL of 0.030-M potassium chromate - will a precipitate form? Pb(NO3)2 (aq) + K2CrO4 (aq)  PbCrO4 (s) + 2 KNO3 (aq)

PbCrO4 (s)  Pb2+ (aq) + CrO42- (aq) Pb(NO3)2 (aq) + K2CrO4 (aq)  PbCrO4 (s) + 2 KNO3 (aq) Step 1: Is a sparingly soluble salt formed? We can see that a double replacement reaction can occur and produce PbCrO4. Since this salt has a very small Ksp, it may precipitate from the mixture. The solubility equilibrium is: PbCrO4 (s)  Pb2+ (aq) + CrO42- (aq) Ksp = 2 x 10-16 = [Pb2+][CrO42-] If a precipitate forms, it means the solubility equilibrium has shifted BACKWARDS. This will happen only if Qsp > Ksp in our mixture.

Step 2: Find the concentrations of the ions that form the sparingly soluble salt. Since we are mixing two solutions in this example, the concentrations of the Pb2+ and CrO42- will be diluted. We have to do a dilution calculation! Dilution: C1V1 = C2V2 [Pb2+] = [CrO42-] =

Either way, no ppte will form! Step 3: Calculate Qsp for the mixture. Qsp = [Pb2+][CrO42-] = (0.0080 M)(0.020 M) Qsp = 1.6 x 10-4 Step 4: Compare Qsp to Ksp. Since Qsp >> Ksp, a precipitate will form when the two solutions are mixed! Note: If Qsp = Ksp, the mixture is saturated If Qsp < Ksp, the solution is unsaturated Either way, no ppte will form!