Chapter 26 Molecular Absorption Spectrometry Molecular spectroscopic methods are among the most widely used of all instrumental analytical methods. Molecular.

Slides:



Advertisements
Similar presentations
Uv spectroscopy.
Advertisements

UV / visible Spectroscopy
Molecular Fluorescence Spectroscopy
Chapter 14 APPLICATION OF ULTRAVIOLET/VISIBLE MOLECULAR ABSORPTION SPECTROMETRY Absorption measurements based upon ultraviolet and visible radiation find.
1 Measurement of transmittance and absorbance
Spectrophotometry Chapter 17, Harris
Chapter 14 Applications of Ultraviolet-Visible Molecular Absorption Spectrometry.
Experiment 6 Amount of Dye in a Sports Drink. Goal To make a Beer’s Law standard curve To use the standard curve (and spectrophotometry) to determine.
Spectroscopy Chapter 7.
UV / visible Spectroscopy
Outline Final Comments on Titrations/Equilibria Titration of Base with a strong acid End-point detection Choice of indicators Titration Curve method Start.
Introduction to Spectrophotometry
Titremetric analysis Dr. Mohammad Khanfar. Concept of Titremetric analysis In general, we utilize certain property of a substance to be analyzed in order.
Absorbance of Electromagnetic Radiation
Chapter 13 Titrimetric Methods
Spectrophotometry: An Analytical Tool. PGCC CHM 103 Sinex IoIo I Cell with Pathlength, b, containing solution light source detector blank where I o =
Introduction to Instrumental Analysis - Spectrophotometry
TITRATION This involves removing small samples from the reaction mixture at different times and then titrating the sample to determine the concentration.
Atomic Absorption Spectroscopy
Year 12 Chemistry Unit 3 – AOS 1 Chemical Analysis.
Chapter 13 – UV-VIS AND NEAR IR ABSORPTION SPECTROSCOPIES
1 Spectroscopic ANALYSIS Part 5 – Spectroscopic Analysis using UV-Visible Absorption Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett.
CHAPTER 15 APPLYING MOLECULAR AND ATOMIC SPECTROSCOPIC METHODS: SHEDDING MORE LIGHT ON THE SUBJECT Introduction to Analytical Chemistry.
Structure Determination by Spectroscopy Mass spectroscopy Ultraviolet-visible spectroscopy Infrared spectroscopy Nuclear magnetic resonance spectroscopy.
TOPIC D: SPECTROMETRY AND SPECTROSCOPY. Mass spectrometry is used to detect isotopes. mass spectrometer uses an ionizing beam of electrons to analyze.
Applications of UV/VIS
REACTIONS IN AQUEOUS SOLUTION Aqueous Solutions and Electrolytes Net Ionic Equations Reactions in Solutions (Precipitation, Acid-Base, Oxidation-Reduction.
Spectrophotometry: An Analytical Tool
Infrared Spectroscopy
Chapter 2: IR Spectroscopy Paras Shah
Spectrophotometry.
Chapter 6 An Introduction to Spectrometric Methods Spectrometric methods are a large group of analytical methods that are based on atomic and molecular.
1 UV-Vis Absorption Spectroscopy Lecture Measurement of Transmittance and Absorbance: The power of the beam transmitted by the analyte solution.
Asa Arjoon U6 Chemistry Presentation on Visible and Ultraviolet Spectroscopy Name : Form : Subject :
Introduction to Spectrochemical Methods
Outline Start Chapter 18 Spectroscopy and Quantitative Analysis.
1 Atomic Emission Spectroscopy Molecular Absorption Spectroscopy Lecture 21.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Infrared Spectroscopy
UV SPECTROSCOPY Absorption spectra.
Chapter 26 Molecular Absorption Spectrometry. 26 A Ultraviolet and visible molecular absorption spectroscopy Ultraviolet and visible radiation absorption.
Spectroscopy and Atomic Spectra A satellite orbiting the Earth contain gravitational potential energy. The satellite can orbit the Earth at any height.
Spectrophotometry at a Glance
IR, NMR, and MS CHEM 315 Lab 8. Molecular Structure and Spectra The most powerful and efficient methods currently in use to characterize the structure.
Instrumental Analysis
ULTRAVIOLET AND VISIBLE SPECTROSCOPY
Molecular Fluorescence Spectroscopy
1 Instrumental Analysis Tutorial 2. 2 Objectives By the end of this session the student should be able to: 1.Describe the grating principle of work. 2.Describe.
Applications of UV-Vis Spectroscopy
Introduction to Spectrophotometry
SPECTROPHOTOMETRY.
Flame Emission Spectrometry
Applications of UV-Vis Spectroscopy
Spectroscopy Chapter 7.
Introduction to Spectrophotometry
Chem. 31 – 10/25 Lecture.
Spectrophotometer Dr . S. Jayakumar.
Infrared Spectroscopy
Spectrophotometry: An Analytical Tool
1901 Application of Spectrophotometry
Molecular Absorption Spectroscopy
Spectroscopy Chem honors.
UV SPECTROSCOPY Absorption spectra.
UV-VISIBLE SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
Light and Matter Main Concept:
SPECTROPHOTOMETRY Applied Chemistry.
Colourimetry The absorption of light by a coloured solution is directly related to the concentration of the solution. Colourimetry determines the concentration.
A SEMINAR ON Ultraviolet-Visible Spectroscopy
Spectrophotometric Analysis
Presentation transcript:

Chapter 26 Molecular Absorption Spectrometry Molecular spectroscopic methods are among the most widely used of all instrumental analytical methods. Molecular spectroscopy is used for the identification and determination of a huge number of inorganic, organic and biochemical species. Molecular ultraviolet/visible absorption spectroscopy is employed primarily for quantitative analysis. Infrared absorption spectroscopy is one of the most powerful tools for determining the structure of both inorganic and organic compounds.

ULTRAVIOLET/VISIBLE MOLECULAR ABSORTION SPECTROSCOPY In the UV/visible region, many types of inorganic compounds absorb radiation directly. Others can be converted to absorbing species by means of a chemical reaction. Absorption measurements in the UV/visible region of the spectrum provide qualitative and quantitative information about organic, inorganic, and biochemical molecules.

Absorption by Organic Compounds: Two types of electrons are responsible for the absorption of ultraviolet and visible radiation by organic molecules: (1) shared electrons that participate directly in bond formation and (2) unshared outer electrons that are largely localized on atoms such as oxygen, the halogens, sulfur, and nitrogen. The shared electrons in single bonds are so firmly held that absorption occurs only with photons more energetic than normal UV photons. Electrons involved in double and triple bonds of organic molecules are more loosely held and are therefore more easily excited than electrons in single bonds. Thus, species with unsaturated bonds generally absorb in the UV. Unsaturated organic functional groups that absorb in the UV/visible region are known as chromophores.

Absorption by Inorganic species: In general, the ions and complexes of elements in the first two transition series absorb broad bands of visible radiation in at least one of their oxidation states and are, as a consequence, colored. Absorption involves transitions between filled and unfilled d- orbitals of the metal ion with energies that depend on the bonded ligands. The energy differences between these d-orbitals and thus the position of the corresponding absorption maximum depend on the position of the element in the periodic table, its oxidation state, and the nature of the ligand bonded to it.

Charge-Transfer Absorption: For quantitative purposes, charge-transfer absorption is particularly important because molar absorptivities are unusually large, a circumstance that leads to high sensitivity. Many inorganic and organic complexes exhibit this type of absorption and are therefore called charge-transfer complexes. A charge-transfer complex consists of an electron-donor group bonded to an electron acceptor. When this product absorbs radiation, and electron from the donor is transferred to an orbital that is largely associated with the acceptor. The excited state is thus the product of a kind of internal oxidation/reduction process.

Qualitative Analysis Qualitative applications of UV/visible spectroscopy are limited because the spectra of most compounds in solution consist of one or, at most, a few broad bands with no fine structure that would be desirable for unambiguous identification. The spectral position of an absorption band is, however, an indication of the presence or absence of certain structural features or functional groups in a molecule. Usually, UV/visible absorption spectroscopy is only used for confirmation in conjunction with a more useful qualitative technique, such as NMR, IR, and mass spectrometry.

Fundamental Studies Spectrophotometry in the UV/visible region is one of the major tools for studying chemical equilibria and kinetics. Wavelengths are chosen to allow monitoring of one or more reactants, products, or intermediate species. The concentrations are then obtained by using Beer’s law with known or previously determined molar absorptivities. A wide variety of reaction types have been studied in this way. From Beer’s law, the final concentrations of reactants and products are obtained and equilibrium constants determined from known stoichiometric relationships. In kinetic studies, spectrophotometry is used to monitor the appearance of a product or intermediate, or the disappearance of a reactant.

Quantitative Analysis Ultravilet/visible spectrophotometry is one of the most powerful and widely used tools for quantitative analysis. Important characteristics of UV/visible spectrophotometry include wide applicability to organic, inorganic, and biochemical systems; good sensitivity; detection limits of to M; moderate to high selectivity; reasonable accuracy and precision (relative errors in the 1 to 3% range and with special techniques, as low as a few tenths of a percent); and speed and convenience. In addition, spectrophotometric methods are readily automated.

Standards and the Calibration Curve: In most spectrophotometric methods, calibration is achieved by the method of external standards. Here, a series of standard solutions of the analyte is used to construct a calibration curve of absorbance versus concentration or to produce a linear regression equation. The slope of the calibration curve or regression equation is the product of absorptivity and pathlength. Thus, using external standards is way of determining the proportionality factor between absorbance and concentration under the same conditions and with the same instrument as is used for the samples.

The Standard Addition Method: The difficulties associated with production of standards with an overall composition closely resembling that of the sample can be formidable. Under such circumstances, the method of standard additions may prove useful. In the single-point standard addition method, a known amount of analyte is introduced into a second aliquot of the sample and the difference in absorbance is used to calculate the analyte concentration of the sample. Alternatively, multiple additions can be made to several aliquots of the sample and multiple standard addition calibration curve obtained.

Analysis of Mixtures: The total absorbance of a solution at any given wavelength is equal to the sum of the absorbances of the individual components in the solution. This relationship makes it possible in principle to determine the concentration of the individual components in a mixture even if there is strong overlap in their spectra. There is no wavelength at which the absorbance is due to just one of these components. To analyze the mixture, molar absorptivities are first determined at wavelengths 1 and 2.

…continued… The wavelengths selected are ones at which the two spectra differ significantly. Thus, at 1, the molar absorptivity of component M is much larger than that for component N. The reverse is true for 2. To complete the analysis, the absorbance of the mixture is determined at the same two wavelengths. From the known molar absorptivities and pathlength, the following equations hold: A 1 =  M1 bc M +  N1 bc N A 2 =  M2 bc M +  N2 bc N

Spectrophotometric Titrations Ultraviolet/visible spectrophotometric and photometric measurements are useful for locating the end points of titrations. The method requires that one or more of the reactants or products absorb radiation or that an absorbing indicator be present. In spectrophotometric titrations, the spectrophotometer serves as the detector that monitors the transmittance or absorbance or the solution at a suitable wavelength during the addition of increments or the titrant. Acid/base titration can be monitored spectrophoto-metrically by adding a small amount of an indicator that is colored in either the acidic or basic form.

Titration Curves: The plot of absorbance versus titrant volume is called a spectrophotometric titration curve; the shapes depend on the species that absorbs radiation. Normally, the absorbances are corrected for dilution by the titrant by multiplying the measured values by (V T + V A )/V A, where V A and V T are the volumes of the analyte solution and titrant, respectively. Ideally, the end point is located by a sharp change in absorbance; often, conditions are arranged so that two straight-line regions of differing slopes intersect at the end point. If the reaction is not quantitative near the equivalence point, the linear segments before and after the end point can be extrapolated to locate the end pint; adherence to Beer’s law is a necessity.

Applications of Spectrophotometric Titrations: Spectrophotometric or photometric titrations have been applied to many types of reactions. Most standard oxidizing agents have characteristic absorption spectra and thus produce photometrically detectable end points. Although standard acids or bases do not absorb, the introduction of acid/base indicators permits the use of spectophotometric end points in neutralization titration. The photometric end point has also been used to great advantage in titration with EDTA and other complexing agents.

…continued… At 745 nm, the cations, the reagent, and the bismuth complex formed in the first part of the titration do not absorb, but the copper complex does. Thus, the solution exhibits no absorbance until essentially all the Bi(III) has been titrated. With the first formation of the Cu(II) complex, an increase in absorbance occurs. The increase continues until the copper end point is reached. Additional reagent causes no further absorbance change. Clearly, two well-defined end points result.

INFRARED ABSORPTION SPECTROSCOPY Infrared absorption spectroscopy is also widely employed in analytical chemistry for identification. Its scope is nearly as broad as that of UV/visible methods. In the IR region, absorption of radiation can give information about the identity of compounds, the presence or absence of functional groups, and the structure of molecules. IR absorption is one of the premier techniques for qualitative analysis and functional group identification.

Molecules That Absorb Infrared Radiation With the exception of homonuclear diatomic molecules, such as O 2, Cl 2, and N 2, all molecules, organic and inorganic, absorb infrared radiation. Absorption of IR radiation involves transitions among the vibrational energy levels of the lowest excited electronic energy levels of molecules. The number of ways a molecule can vibrate is related to the number of bonds it contains and thus the number of atoms making up the molecule. The number of vibrations is large even for a simple molecule.