1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.

Slides:



Advertisements
Similar presentations
Proposed new uses for the Ceilometer Network
Advertisements

 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Simultaneous profile measurements of BrO, OClO and NO 2 in the polar vortex Chris Sioris and Kelly Chance Smithsonian Astrophysical Observatory.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
METO621 Lesson 18. Thermal Emission in the Atmosphere – Treatment of clouds Scattering by cloud particles is usually ignored in the longwave spectrum.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
METO 621 CHEM Lesson 7. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
14-16 April 2003International Limb Workshop, Bremen On two potential sources of systematic error in retrievals using limb-scattered sunlight Chris A. McLinden.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
Comparison of the aerosol extinction coefficient retrieved from MAX-DOAS measurements to in-situ measurements P. Zieger 1, K. Clemer 2, S. Yilmaz 3, R.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
Irie et al., Multi-component retrievals for MAX-DOAS, 2 nd CINDI workshop, Brussels, March 10-11, 2010 Multi-component vertical profile retrievals for.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Cloud screening and aerosol retrievals from MAX-DOAS measurements at Ukkel Clio Gielen Michel Van Roozendael, Francois Hendrick, Caroline Fayt, Christian.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
Xiong Liu, Mike Newchurch Department of Atmospheric Science University of Alabama in Huntsville, Huntsville, Alabama, USA
October 29-30, 2001MEIDEX - Crew Tutorial - Calibration F - 1 MEIDEX – Crew Tutorial Calibration of IMC-201 Adam D. Devir, MEIDEX Payload Manager.
Observations of Formaldehyde and Related Atmospheric Species Using Multi-Axis Spectroscopy Christopher P. Beekman and Dr. Heather C. Allen Department of.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
Measuring UV aerosol absorption. Why is aerosol UV absorption important ? Change in boundary layer ozone mixing ratios as a result of direct aerosol forcing.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
April Hansen et al. [1997] proposed that absorbing aerosol may reduce cloudiness by modifying the heating rate profiles of the atmosphere. Absorbing.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
HONO retrievals in Beijing and Xianghe F. Hendrick 1, K. Clémer 1,*, C. Fayt 1, C. Hermans 1, Y. Huan 1,2, T. Vlemmix 1, P. Wang 2, and M. Van Roozendael.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Comparison of OMI NO 2 with Ground-based Direct Sun Measurements at NASA GSFC and JPL Table Mountain during Summer 2007 George H. Mount & Elena Spinei.
Cloud optical properties: modeling and sensitivity study Ping Yang Texas A&M University May 28,2003 Madison, Wisconsin.
Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou,
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
Plans to study horizontal NO 2 distribution Ankie Piters, Tim Vlemmix, KNMI data from: INTA, IUPB, JAMSTEC, KNMI, Leicester, NASA Objectives: –Satellite.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Task 1: Initial trade-off:
 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry.
© Imperial College LondonPage 1 Estimating the Saharan dust loading over a west African surface site GIST 26: May 2007.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Measurements of pollutants and their spatial distributions over the Los Angeles Basin Ross Cheung1,2, Olga Pikelnaya1,2, Catalina Tsai1, Jochen Stutz1,2,
Meteorologisches Institut Theresienstr. 37 D –80333 Munich Dependence of UV radiation on altitude and aerosol optical.
 Methodology  Comparison with others instruments  Impact of daily AMF  Conclusions Tropospheric NO 2 from SAOZ F. Goutail, A. Pazmino, A. Griesfeller,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
U.S. Environmental Protection Agency Office of Research and Development Implementation of an Online Photolysis Module in CMAQ 4.7 Christopher G. Nolte.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 2. In-cloud Multiple Scattering Xiong Liu, 1 Mike Newchurch, 1,2 Robert.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
DOAS workshop 2015, Brussels, July 2015
Julia Remmers1, Thomas Wagner1
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Winds in the Polar Regions from MODIS: Atmospheric Considerations
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
Robert Wood, Duli Chand, Tad Anderson University of Washington
MAXDOAS horizontal (averaging) effects
M. De Graaf1,2, K. Sarna2, J. Brown3, E. Tenner2, M. Schenkels4, and D
Presentation transcript:

1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer Mixing Layer Height: Correlation with Ceilometer NO2 Surface mixing ratio: Correlation with EMPA Mixing Layer Height: Correlation with Ceilometer Inversion of synthetic NO2 SCDs 4. Conclusions Results of the profile inversion from MPI MiniMAX-DOAS measurements during CINDI Thomas Wagner, Reza Shaigan, Steffen Beirle MPI Mainz, Germany

Aerosol profiles are parametrised by 3 parameters: following the ideas of Li, X., Brauers, T., Shao, M., Garland, R. M., Wagner, T., Deutschmann, T., and Wahner, A.: MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data, Atmos. Chem. Phys., 10, , A) vertical optical depth OD (related to total aerosol amount) B) mixing layer height MLH (important atmospheric parameter) C) fraction of total optical depth in boundary layer (allows to adjust vertical profile, depending e.g. on vertical mixing into free troposphere)f = % Constant extinction in ML, exponential decrease above 1. The MPI MAX-DOAS inversion scheme

f = 1.5 New (since Nov. 2009): f > 1: Profiles with elevated layers Aerosol profiles are parametrised by 3 parameters: following the ideas of Li, X., Brauers, T., Shao, M., Garland, R. M., Wagner, T., Deutschmann, T., and Wahner, A.: MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data, Atmos. Chem. Phys., 10, , The MPI MAX-DOAS inversion scheme

f = 1.1 New (since Nov. 2009): f > 1: Profiles with elevated layers Aerosol profiles are parametrised by 3 parameters: following the ideas of Li, X., Brauers, T., Shao, M., Garland, R. M., Wagner, T., Deutschmann, T., and Wahner, A.: MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data, Atmos. Chem. Phys., 10, , The MPI MAX-DOAS inversion scheme Multi-layer aerosols can not be described by this parametrisation

Modelling of O4 AMFs: Radiative transfer modelling: Backward Monte-Carlo RTM McArTim (Deutschmann, 2009) Surface albedo: 5% Surface altitude of measurement site Pressure and temperature profiles from US standard atmosphere Greenblatt et al. O4 cross section (corrected by +15% to +25%) Single scattering albedo: 0.95 Asymmetry parameter: 0.68 Number of aerosol scenarios: MLH (14): 20, 100, 200, 300, 500, 700, 1000, 1200, 1500, 1750, 2000, 2500, 3000, 5000m OD (10): 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0 f (11): 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.1, 1.2, 1.5, 1.8 for 8 elevation angles and 14 SZA / rel. Azimuth angles 1. The MPI MAX-DOAS inversion scheme

Parametrisation of NO 2 profiles in a similar way: A) mixing layer height MLH (important atmospheric parameter) B) fraction f of total VCD in boundary layer (allows to adjust vertical profile, depending e.g. on vertical mixing into free troposphere) However, no absolute tropospheric VCD is varied, because NO 2 AMF depends only on relative profile 1. The MPI MAX-DOAS inversion scheme

Aerosol inversion: Modelled AMFs are fitted to the measured data in the following way: Measurements: -Subtraction of O4 DSCD at 90° for each elevation sequence -Division by O4 VCD => O4 DAMF Model results: -Subtraction of O4 AMF at 90° for each elevation sequence => O4 DAMF Least squares fit: OD, ML (f: fixed) 1. The MPI MAX-DOAS inversion scheme

Result of aerosol fit, Cabauw, Sequence 6 Min: for layer height 0.5km, optical depth: The MPI MAX-DOAS inversion scheme

NO 2 inversion: Modelled AMFs are fitted to the measured data in the following way: Measurements: - Subtraction of NO2 DSCD at 90° for each elevation sequence - Division by (shifted) DSCD at 10° Model results (calculated for specific aerosol scenario): - Subtraction of NO2 AMF at 90° for each elevation sequence => NO2 DAMF - Division by DAMFs at 10° Least squares fit: ML (f: fixed) Aerosol parameter from O4 inversion 1. The MPI MAX-DOAS inversion scheme

Result of NO2 fit, Cabauw sequence sequence 62 Chi2 = 0.05Chi2 = The MPI MAX-DOAS inversion scheme

Classification of the cloud cover using radiance and O4 observations at 90° elevation angle Temporal variation of radiance smooth? yes => Temporal variation of O4 smooth? yes => clear day no => cloudy day O4 absorption largely increased and/or varying rapidly compared to clear day? yes => thick cloud no => thin cloud 2. Cloud classification

Day with clear sky Cabauw Bruxelles 2. Cloud classification

Day with 'thin' clouds Cabauw Bruxelles 2. Cloud classification

Day with 'thick' clouds Cabauw Bruxelles 2. Cloud classification

Classification of the cloud cover using radiance and O4 observations at 90° elevation angle O4 AMF – O4 AMF cloudfree 2. Cloud classification

A) Typical diurnal cycles B) Aerosol OD: Correlation with AERONET data C) Surface extinction: Correlation with WetNephelometer data D) Mixing Layer Height: Correlation with Ceilometer data 3.1 Results: Aerosols

Clear sky cloudy 3.1 Results: Aerosols A) Typical diurnal cycles

mostly cloudy Clear sky 3.1 Results: Aerosols A) Typical diurnal cycles

All coincidences (half hour averages) 3.1 Results: AerosolsB) Correlation with AERONET OD O4 scaling factor = 1.2 f=0.9

Data with layer heigth >= 3km removed 3.1 Results: AerosolsB) Correlation with AERONET OD

Also data with chi2 >= 0.04 removed 3.1 Results: AerosolsB) Correlation with AERONET OD

Days with (unrealistic) rapid variation of the aerosol OD: 3.1 Results: AerosolsB) Correlation with AERONET OD

Data with rapid variation of OD (> 0.5) removed 3.1 Results: AerosolsB) Correlation with AERONET OD

Only data for thin clouds 3.1 Results: AerosolsB) Correlation with AERONET OD

Only data for clear sky Coincidences only in the morning! (with systematically low MAX-DOAS results) 3.1 Results: AerosolsB) Correlation with AERONET OD

Only data for thick clouds 3.1 Results: AerosolsB) Correlation with AERONET OD

Correlation with WetNephelometer data from Paul Zieger 3.1 Results: AerosolsC) Correlation with in-situ extinction

Correlation with WetNephelometer data from Paul Zieger for different layer heights >1500m: Slope  2 <1500m Slope  1

MAX-DOAS aerosol layer height F-value: 0.9 F-value: Results: AerosolsD) Correlation with Ceilometer MLH

all data 3.1 Results: AerosolsD) Correlation with Ceilometer MLH

only clear sky observations and chi2 < Results: AerosolsD) Correlation with Ceilometer MLH

3.2 Results: NO2 A) Typical diurnal cycles B) Mixing ratio: Correlation with EMPA data C) Mixing Layer Height: Correlation with Ceilometer data D) Inversion of synthetic NO2 DSCDs

NO2 mixing ratio for different aerosol f-values thin clouds 3.2 Results: NO2 A) Typical diurnal cycles

thin clouds NO2 mixing ratio for different NO2 f-values 3.2 Results: NO2 A) Typical diurnal cycles

All coincidences (half hour averages, f-value: 0.9) 3.2 Results: NO2B) Correlation with EMPA mixing ratio

All coincidences (half hour averages, f-value: 0.9) Chi2 < Results: NO2B) Correlation with EMPA mixing ratio

Only thin clouds 3.2 Results: NO2B) Correlation with EMPA mixing ratio

clear sky (only early morning data) 3.2 Results: NO2B) Correlation with EMPA mixing ratio

Only thick clouds 3.2 Results: NO2B) Correlation with EMPA mixing ratio

Slope of fitR2R2 All data chi2< thin clouds clear sky thick clouds

On some days the NO2 mixing ratios depend strongly on the assumed (relative) aerosol profile. The mixing ratios derived for an elevated aerosol layer (f>1) agree better with the in-situ data. For these observations also the lowest chi2 is found in the aerosol fit (O4 data) for an assumed elevated aerosol layer 3.2 Results: NO2B) Correlation with EMPA mixing ratio

Lowest chi2 for elevated aerosol layer Better agreement of NO2 mixing ratio for elevated aerosol layer 3.2 Results: NO2B) Correlation with EMPA mixing ratio

3.2 Results: NO2C) Correlation with Ceilometer MLH Slope of fitR2R2 All data chi2< thin clouds clear sky thick clouds Aerosol fit: f=0.9 f=1.1

Fit results for all daily profiles (UV profile 03) F-value Layer height NO2 VCD Chi2 3.2 Results: NO2D) Inversion of synthetic NO2 DSCDs

(UV profile 03, all daily profiles) 3.2 Results: NO2D) Inversion of synthetic NO2 DSCDs

Results for all UV profiles 3.2 Results: NO2D) Inversion of synthetic NO2 DSCDs

-simple MAX-DOAS inversion scheme for UV measurements, based on MC-RTM LUT and least squares fit of simple profile parametrisation -discrimination scheme for clear sky / thin clouds / thick clouds Aerosol inversion: -aerosol OD is reasonable for aerosol f-value of 0.9, clear sky and thin cloud observations; MAX-DOAS aerosol OD about 25% smaller than AERONET -aerosol extinction agrees well with wetnepelometer data for layer heights <1500m -aerosol layer height shows (weak) correlation with ceilometer data only for clear sky 4. Conclusions

NO2 inversion: -NO2 mixing ratio agrees well with in-situ observations for clear sky and thin cloud observations; only weak dependence on aerosol f-value; almost no dependence on NO2 f-value -NO2 layer height shows reasonable correlation with ceilometer data for clear sky and thin cloud data Inversion of synthetic NO2 SCDs -good agreement found for NO2 profiles for low and high aerosol load -for some profiles rather large deviations during the day 4. Conclusions

different scaling factors for the O4 cross section (observations for thin clouds) +20 % seems to be the best choice 3.1 Results: AerosolsB) Correlation with AERONET OD +15 % +20 % +25 %

Correlations for different f-.values (observations for thin clouds) 0.9 seems to be a good choice 3.1 Results: AerosolsB) Correlation with AERONET OD

Aerosol extinction for different aerosol f-values thin clouds 3.1 Results: Aerosols

clear sky cloudy sky 3.1 Results: Aerosols Aerosol extinction for different aerosol f-values

for different aerosol f-values (thin cloud data) 3.2 Results: NO2B) Correlation with EMPA mixing ratio

for different NO2 f-values (thin cloud data) Almost no dependence on NO2 f-value 3.2 Results: NO2B) Correlation with EMPA mixing ratio

Day with better agreement for elevated layer (some periods) Lowest chi2 for elevated aerosol layer Better agreement of NO2 mixing ratio for elevated aerosol layer 3.2 Results: NO2B) Correlation with EMPA mixing ratio

(all data, NO2 f-value: 0.9) 3.2 Results: NO2C) Correlation with Ceilometer MLH

NO2 Chi2 < Results: NO2C) Correlation with Ceilometer MLH

Only thin clouds 3.2 Results: NO2C) Correlation with Ceilometer MLH

Only clear sky 3.2 Results: NO2C) Correlation with Ceilometer MLH

Only thick clouds 3.2 Results: NO2C) Correlation with Ceilometer MLH