Course Outline (Tentative)

Slides:



Advertisements
Similar presentations
Ch 3 Analysis and Transmission of Signals
Advertisements

C H A P T E R 3 ANALYSIS AND TRANSMISSION OF SIGNALS.
Lecture 7: Basis Functions & Fourier Series
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Generalized Fourier Transform Analog Modulation Amplitude Modulation.
Department of Electronics and CommunicationsEngineeringYANSAHAN UNIVERSITY Department of Electronics and Communications Engineering YANSAHAN UNIVERSITY.
Signals and Systems – Chapter 5
Review of Frequency Domain
Properties of continuous Fourier Transforms
PROPERTIES OF FOURIER REPRESENTATIONS
Lecture 8: Fourier Series and Fourier Transform
Continuous-Time Signal Analysis: The Fourier Transform
Chapter 4 The Fourier Series and Fourier Transform
Chapter 7 CT Signal Analysis : Fourier Transform Basil Hamed
Chapter 4 The Fourier Series and Fourier Transform.
ELEC ENG 4035 Communications IV1 School of Electrical & Electronic Engineering 1 Section 2: Frequency Domain Analysis Contents 2.1 Fourier Series 2.2 Fourier.
Chapter 5 Frequency Domain Analysis of Systems. Consider the following CT LTI system: absolutely integrable,Assumption: the impulse response h(t) is absolutely.
1 Chapter 8 The Discrete Fourier Transform 2 Introduction  In Chapters 2 and 3 we discussed the representation of sequences and LTI systems in terms.
Lecture 1. References In no particular order Modern Digital and Analog Communication Systems, B. P. Lathi, 3 rd edition, 1998 Communication Systems Engineering,
Signal and Systems Prof. H. Sameti Chapter 8: Complex Exponential Amplitude Modulation Sinusoidal AM Demodulation of Sinusoidal AM Single-Sideband (SSB)
Signals and Systems Fall 2003 Lecture #15 28 October Complex Exponential Amplitude Modulation 2. Sinusoidal AM 3. Demodulation of Sinusoidal AM.
Single-Sideband AM A DSB-SC AM signal transmits two sidebands and required a channel bandwidth of Bc = 2W Hz However, the two sidebands are redundant The.
8.0 Communication Systems Modulation: embedding an information-bearing signal into a second signal e.g. – purposes : locate the signal on the right band.
Fourier Transforms Section Kamen and Heck.
Fourier Series Summary (From Salivahanan et al, 2002)
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
Signal and System Analysis Objectives: To define the energy and power of a signal To classify different types of signals To introduce special functions.
Module 2 SPECTRAL ANALYSIS OF COMMUNICATION SIGNAL.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Review Resources: Wiki: Superheterodyne Receivers RE: Superheterodyne.
Chapter 5 Frequency Domain Analysis of Systems. Consider the following CT LTI system: absolutely integrable,Assumption: the impulse response h(t) is absolutely.
Signal and Systems Prof. H. Sameti Chapter 5: The Discrete Time Fourier Transform Examples of the DT Fourier Transform Properties of the DT Fourier Transform.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
1 Fourier Representations of Signals & Linear Time-Invariant Systems Chapter 3.
Signals & systems Ch.3 Fourier Transform of Signals and LTI System 5/30/2016.
Signal and Systems Prof. H. Sameti Chapter 3: Fourier Series Representation of Periodic Signals Complex Exponentials as Eigenfunctions of LTI Systems Fourier.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
Signal and System I The unit step response of an LTI system.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
BYST SigSys - WS2003: Fourier Rep. 120 CPE200 Signals and Systems Chapter 3: Fourier Representations for Signals (Part I)
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Chapter 2. Signals and Linear Systems
Fourier Analysis of Signals and Systems
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Demultiplexing and Demodulation Superheterodyne Receivers Review Resources: Wiki:
Demodulation of DSB-SC AM Signals
Signals and Systems Prof. H. Sameti Chapter 4: The Continuous Time Fourier Transform Derivation of the CT Fourier Transform pair Examples of Fourier Transforms.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Amplitude/Phase Modulation
Signals and Systems Fall 2003 Lecture #6 23 September CT Fourier series reprise, properties, and examples 2. DT Fourier series 3. DT Fourier series.
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 UniMAP.
1 Roadmap SignalSystem Input Signal Output Signal characteristics Given input and system information, solve for the response Solving differential equation.
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
بسم الله الرحمن الرحيم University of Khartoum Department of Electrical and Electronic Engineering Third Year – 2015 Dr. Iman AbuelMaaly Abdelrahman
Chapter 2. Signals and Linear Systems
ENEE 322: Continuous-Time Fourier Transform (Chapter 4)
8.0 Communication Systems Modulation: embedding an information-bearing signal into a second signal e.g. – purposes : locate the signal on the right band.
Math for CS Fourier Transforms
EE104: Lecture 6 Outline Announcements: HW 1 due today, HW 2 posted Review of Last Lecture Additional comments on Fourier transforms Review of time window.
Convergence of Fourier series It is known that a periodic signal x(t) has a Fourier series representation if it satisfies the following Dirichlet conditions:
UNIT-II FOURIER TRANSFORM
Signals & systems Ch.3 Fourier Transform of Signals and LTI System
Principle of Digital Communication (PDC) – EC 2004
Chapter 2. Fourier Representation of Signals and Systems
UNIT II Analysis of Continuous Time signal
Signal and Systems Chapter 8: Modulation
LECTURE 12: SIGNAL MODULATION AND DEMODULATION
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Chapter 8 The Discrete Fourier Transform
Lesson Week 8 Fourier Transform of Time Functions (DC Signal, Periodic Signals, and Pulsed Cosine)
4. The Continuous time Fourier Transform
DIGITAL CONTROL SYSTEM WEEK 3 NUMERICAL APPROXIMATION
SIGNALS & SYSTEMS (ENT 281)
Presentation transcript:

Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum Properties of LTI Systems … Fourier Series Response to complex exponentials Harmonically related complex exponentials … Fourier Integral Fourier Transform & Properties … Modulation (An application example) Discrete-Time Frequency Domain Methods DT Fourier Series DT Fourier Transform Sampling Theorem Laplace Transform Z Transform

Chapter IV Fourier Integral

Continuous–Time Fourier Transform So far, we have seen periodic signals and their representation in terms of linear combination of complex exponentials. Practical meaning: superposition of harmonically related complex exponentials. How about aperiodic signals?

Fourier Transform Representation of Aperiodic Signals (An aperiodic signal is a periodic signal with infinite period.) Let us consider continuous-time periodic square wave ...

Fourier Transform Representation of Aperiodic Signals Recall that the FS coefficients are: Let us look at it as:

Fourier Transform Representation of Aperiodic Signals as ,  closer samples, faster rate! as , periodic square wave  rectangular pulse (aperiodic signal) , FS coefficients x T  envelope itself  Think of aperiodic signal as the limit of a periodic signal

Fourier Transform Representation of Aperiodic Signals  Examine the limiting behaviour of FS representation of this signal  Consider a signal that is of finite duration,

Fourier Transform Representation of Aperiodic Signals We can construct a periodic signal out of with period For t ... FS representation of periodic signal

Fourier Transform Representation of Aperiodic Signals Since (Recall and envelope case) as the envelope of Define

Fourier Transform Representation of Aperiodic Signals Hence, : inverse Fourier transform Fourier Transform pair : Fourier transform (spectrum) information needed for describing x(t) as a linear combination of sinusoids

Convergence of Fourier Transform at any t except at discontinuities (similar to periodic case). Dirichlet conditions guarantee that i) x(t) is absolutely integrable, ii) x(t) has a fiinite number of maxima and minima within any finite interval iii) x(t) has a finite number of discontinuities within any finite interval. Further more each of these discontinuities must be finite.

Example

Example -T1 T1 x(t) t X(ω) 2T1 ω

Example (cont’d) X(ω) ω -W W x(t) t

Note t Narrow in Time Domain  have Broad FT! X(ω) 2T1 ω -T1 T1 x(t) t x(t) t X(ω) ω -W W Narrow in Time Domain  have Broad FT! Broad in Time Domain  Narrow FT! (Scaling property)

Fourier Transform For Periodic Signals Consider a signal x(t) with Fourier Transform (i.e., a signal impulse of area 2 at ω=ω0) Let us find the signal if X(ω) is a linear combination of impulses equally spaced in frequency, i.e., then : FS representation of periodic signal

Fourier Transform For Periodic Signals Hence, FT of periodic signal is weighted impulse train occuring at integer multiples of ω0 Example: a) Periodic square wave: Recall FS coefficients of periodic square wave (from previous chapter)

Fourier Transform For Periodic Signals b) x(t)=sinω0t X(ω) -ω0 ω0 x(t)=cosω0t c) impulse train FT is again impulse train in frequency domain with period

Properties of CT Fourier Transform Notations: 1. Linearity: Prove it as an exercise!

Properties of CT Fourier Transform 2. Time Shifting: Proof: F{x(t-t0)}

Properties of CT Fourier Transform Example X(t) 1 2 3 4 1.5 t t 1 X1(t) t 1 X2(t) By linearity and time-shifting properties of FT

Properties of CT Fourier Transform 3. Conjugation / Conjugate Symmetry: for real x(t) Opp. pg. 303 for proof ! 4. Differentiation & Integration: Multiplication in frequency domain * Important in solving linear differential equations:

Properties of CT Fourier Transform Example Consider Take FT of both sides; For

Properties of CT Fourier Transform Example Consider (unit step) For

Properties of CT Fourier Transform 5. Time and Frequency Scaling: (Prove using FT integral) Remark: - Inverse relation between time and frequency domains: - A signal varying rapidly will have a transform occupying wider frequency band, and vice versa -

Properties of CT Fourier Transform 6. Duality: Observe the FT and inverse FT integrals: Recall Symmetry between the FT pairs! In general;

Properties of CT Fourier Transform Example: By duality; (prove it!) Dual of the properties: (frequency differentiation) (frequency shifting)

Properties of CT Fourier Transform 7. Parseval’s Relation: total energy in x(t) (Check the proof in Opp. pg.312) energy density spectrum

Properties of CT Fourier Transform Convolution Property (Additional & very important properties of FT, in terms of LTI systems) Take FT.

Properties of CT Fourier Transform Convolution Property Convolution of two signals in time domain is equivalent to multiplication of their spectrums in frequency domain frequency response of the system Example: a) Consider a CT, LTI system with Recall the time-shifting property of FT Frequency response is

Properties of CT Fourier Transform Convolution Property b) Frequency-selective filtering: achieved by an LTI system whose frequency response H(ω) passes desired range of frequencies and stops (attenuates) other frequencies, e.g., 1 -ωc ω ωc H(ω) Passband stopband ideal lowpass filter

Properties of CT Fourier Transform Multiplication Property From convolution property and duality, multiplication in time domain corresponds to convolution in frequency domain. Amplitude Modulation (multiplication of two signals) important in telecommunications ! A -ω1 ω ω1 S(ω) Example: Let s(t) has spectrum S(ω) Baseband signal

Properties of CT Fourier Transform Multiplication Property -ω0 ω ω0 P(ω) p(t)=cosω0t R(ω) -ω0 -ω0-ω1 -ω0+ω1 ω0 ω0-ω1 ω0+ω1 - Information (spectral content) in s(t) is preserved but shifted to higher frequencies (more suitable for transmission)

Properties of CT Fourier Transform Multiplication Property To recover: -Multiply r(t) with p(t)=cosω0t g(t)=r(t).p(t) -Apply lowpass filter!

Application of Fourier Theory Communication Systems Definitions: Modulation: Embedding an info-bearing signal into a second signal. Demodulation: Extracting the information bearing signal from the second signal. Info-bearing signal x(t): The signal to be transmitted (modulating signal). Carrier signal c(t): The signal which carries the info-bearing signal (usually a sinusoidal signal).

Application of Fourier Theory Communication Systems Modulated signal y(t) is then the product of x(t) and c(t) y(t)=x(t).c(t) Objective: To produce a signal whose frequency range is suitable for transmission over communication channel. e.g.: individual voice signals are in 200Hz-4kHz telephony (long-distance) over microwave or satellite links in 300MHz-300GHz (microwave), 300MHz-40GHz (satellite) Information in voice signals must be shifted into these higher ranges of frequency

Application of Fourier Theory Amplitude Modulation with Complex Exponential Carrier ωc: carrier frequency Consider θc=0 From multiplication property

Application of Fourier Theory Amplitude Modulation with Complex Exponential Carrier 1 X(ω) ω ωc C(ω) ω * ωc+ ωm 1 Y(ω) ω ωc ωc- ωm To recover x(t) from y(t): (Shift the spectrum back) (Demodulation)

Application of Fourier Theory Amplitude Modulation with Sinusoidal Carrier y(t) x(t) For θc=0 , y(t)=x(t)cosωct , -ωc- ωm Y(ω) ωc+ ωm ω ωc- ωm ωc -ωc -ωc+ ωm

Application of Fourier Theory Amplitude Modulation with a Sinusoidal Carrier To recover x(t) from y(t), the condition ωc>ωm must be satisfied! Otherwise, the replicas will overlap. Example: -ωm ωm 1 X(ω) Y(ω) 1 -ωm- ωc -ωc ωc ωm+ ωc

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation  To recover the information-bearing signal x(t) at the receiver Synchronous Demodulation: Transmitter and receiver are synchronized in phase x(t) can be recovered by modulating y(t) with the same sinusoidal carrier and applying a lowpass filter. (need to get rid of the 2nd term in RHS)

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation ωc+ ωm ω ωc- ωm -ωc ωc C(ω) ω -ωc W(ω) ω 2ωc- ωm 2ωc H(ω) -ωm ωm Apply lowpass filter (H(ω)) with a gain of 2 and cutoff frequency (ωco) ωm<ωco<2ωc-ωm

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation y(t) x(t) In general, w(t) y(t) -ωco ωco 2 H(ω) x(t) lowpass filter

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation Assume that modulator and demodulator are not synchronized; θc : phase of modulator φc : phase of demodulator

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation When we apply lowpass filter output x(t) output 0 must be maintained over time requires synchronization

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation Asynchronous Demodulation:  Avoids the need for synchronization between the modulator and demodulator  If the message signal x(t) is positive, and carrier frequency ωc is much higher than ωm (the highest frequency in the modulating signal), then envelope of y(t) is a very close approximation to x(t) envelope y(t) t

Application of Fourier Theory Demodulation for Sinusoidal Amplitude Modulation Envelope Detector :  to assure positivity add DC to message signal, i.e., x(t)+A > 0  x(t) vary slowly compared to ωc (to track envelope) A y(t)=(A+x(t)) cosωct x(t) half-wave rectifier! + – y(t) C R w(t) cos ωct Tradeoff : simpler demodulator, but requires transmission of redundancy (higher power)

Application of Fourier Theory Single-Sideband (SSB) Sinusoidal Amplitude Modulation For ωm is the highest frequency in x(t), total bandwidth of the original signal 2ωm. X(ω)  2ωm ωm With sinusoidal carrier: spectrum shifted to ωc and -ωc  twice bandwidth is required. Y(ω) ωc -ωc  4ωm  Redundancy in modulated signal!  Solution: Use SSB modulation

Application of Fourier Theory Single-Sideband (SSB) Sinusoidal Amplitude Modulation X(ω) Y(ω) ωc -ωc ωc +ωm lower sideband upper sideband (DSB) YU(ω) ωc -ωc Spectrum with upper sidebands (SSB) YL(ω) ωc -ωc (SSB) Spectrum with lower sidebands

Application of Fourier Theory Single-Sideband (SSB) Sinusoidal Amplitude Modulation For upper sidebands: Apply y(t) to a sharp cutoff bandpass/highpass filter. -ωc ωc H(ω) y(t) yU(t) YU(ω) ωc -ωc Y(ω) ωc -ωc

Application of Fourier Theory Single-Sideband (SSB) Sinusoidal Amplitude Modulation For lower sidebands: Use 90o phase-shift network. x(t) cos ωct sin ωct xp(t) y1(t) y2(t) y(t) (Trace the operation as exercise!) YL(ω) ωc -ωc AM-DSB/WC AM-DSB/SC , AM-SSB/WC AM-SSB/SC : AM, Double (Single) SB, with carrier : AM, Double (Single) SB, suppressed carrier