Introduction to OLAP / Microsoft Analysis Services

Slides:



Advertisements
Similar presentations
Module 13: Performance Tuning. Overview Performance tuning methodologies Instance level Database level Application level Overview of tools and techniques.
Advertisements

1. Complete and integrated BI and Performance Management offering Complete and integrated BI and Performance Management offering Widespread delivery of.
17th February, 2000 by Maciej Korzeniowski (CERN-IT-IA-MI) 1 Oracle Discoverer Product Presentation  This is an ad hoc query and analysis tool for.
OLAP Tuning. Outline OLAP 101 – Data warehouse architecture – ROLAP, MOLAP and HOLAP Data Cube – Star Schema and operations – The CUBE operator – Tuning.
Online Analytical Processing OLAP
Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
OLAP Services Business Intelligence Solutions. Agenda Definition of OLAP Types of OLAP Definition of Cube Definition of DMR Differences between Cube and.
Data Sources Data Warehouse Analysis Results Data visualisation Analytical tools OLAP Data Mining Overview of Business Intelligence Data visualisation.
SQL 2005 BI and Reporting Services for the developer
Unlock Your Data Rich connectivity Robust data integration Enterprise-class manageability Deliver Relevant Information Intuitive design environment.
Data Warehousing - 3 ISYS 650. Snowflake Schema one or more dimension tables do not join directly to the fact table but must join through other dimension.
INTRODUCTION TO OLAP MIS 497. Why OLAP? Online Analytical Processing vs. Online Transaction Processing Online Analytical Processing vs. Online Transaction.
CS2032 DATA WAREHOUSING AND DATA MINING
CSE6011 Warehouse Models & Operators  Data Models  relations  stars & snowflakes  cubes  Operators  slice & dice  roll-up, drill down  pivoting.
Chapter 13 The Data Warehouse
SESSION 7 MANAGING DATA DATARESOURCES. File Organization Terms and Concepts Field: Group of words or a complete number Record: Group of related fields.
Business Intelligence System September 2013 BI.
Introduction to Building a BI Solution 권오주 OLAPForum
Designing a Data Warehouse
Passage Three Introduction to Microsoft SQL Server 2000.
Online Analytical Processing (OLAP) Hweichao Lu CS157B-02 Spring 2007.
Understanding Analysis Services Architecture. Microsoft Data Warehousing Overview OLTP Source DTS DW Storage Analysis Services Clients OLE DB for OLAP,
Week 6 Lecture The Data Warehouse Samuel Conn, Asst. Professor
SQL Analysis Services Microsoft® SQL Server 2005 Analysis Services provides unified, fully integrated views of your business data to support online.
1.
M icrosoft Data Warehousing - SQL Server State of the Technology Presentation by Sujata Angara Nakul Johri Sang Ho Park.
Analysis Services 101 Dave Fackler, MCDBA, MCSE, MCT Director, Business Intelligence Practice Intellinet Corporation.
Chris Testa-O’Neill QA. Who am I Chris Testa-O’Neill Business Intelligence Specialist at QA Technical Author for Microsoft E-Learning Author of the SQL.
IMS 6217: Data Warehousing / Business Intelligence Part 3 1 Dr. Lawrence West, Management Dept., University of Central Florida Analysis.
Multi-Dimensional Databases and On-Line Analytical Processing Dominic Cutuli John Lundgren Clark Mitchell Leslie Theiss Ken Zenkevich.
Ahsan Abdullah 1 Data Warehousing Lecture-11 Multidimensional OLAP (MOLAP) Virtual University of Pakistan Ahsan Abdullah Assoc. Prof. & Head Center for.
OnLine Analytical Processing (OLAP)
CS480 Computer Science Seminar Introduction to Microsoft Solutions Framework (MSF)
Introduction to Analysis Services and OLAP Technology Tom Conlon and Rob Zare Program Managers SQL Server Business Intelligence Unit Microsoft Corp.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
CSS/417 Introduction to Database Management Systems Workshop 4.
MIS2502: Data Analytics The Information Architecture of an Organization.
Designing Aggregations. Performance Fundamentals - Aggregations Pre-calculated summaries of data Intersections of levels from each dimension Tradeoff.
MANAGING DATA RESOURCES ~ pertemuan 7 ~ Oleh: Ir. Abdul Hayat, MTI.
Ayyat IT Group Murad Faridi Roll NO#2492 Muhammad Waqas Roll NO#2803 Salman Raza Roll NO#2473 Junaid Pervaiz Roll NO#2468 Instructor :- “ Madam Sana Saeed”
OLAP in DWH Ján Genči PDT. 2 Outline OLAP Definitions and Rules The term OLAP was introduced in a paper entitled “Providing On-Line Analytical.
Data Warehousing Multidimensional Analysis
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
Distributed Data Analysis & Dissemination System (D-DADS ) Special Interest Group on Data Integration June 2000.
By N.Gopinath AP/CSE.  The data warehouse architecture is based on a relational database management system server that functions as the central repository.
What is OLAP?.
SQL Server 2008 Analysis Services. END USER TOOLS & PERFORMANCE MANAGEMENT APPS Excel PerformancePoint Server BI PLATFORM SQL Server Reporting Services.
1 Database Systems, 8 th Edition 1 Chapter 13 Business Intelligence and Data Warehouses Objectives In this chapter, you will learn: –How business intelligence.
Features Of SQL Server 2000: 1. Internet Integration: SQL Server 2000 works with other products to form a stable and secure data store for internet and.
1 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Introduction to Essbase.
Pindaro Demertzoglou Data Resource Management – MGMT 4170 Lally School of Management Rensselaer Polytechnic Institute.
Data Warehousing and OLAP Outline u Models & operations u Implementing a warehouse u Future directions.
The Concepts of Business Intelligence Microsoft® Business Intelligence Solutions.
1 Copyright © 2008, Oracle. All rights reserved. Repository Basics.
Managing Data Resources File Organization and databases for business information systems.
CSE6011 Implementing a Warehouse  Monitoring: Sending data from sources  Integrating: Loading, cleansing,...  Processing: Query processing, indexing,...
Introduction to SQL Server Analysis Services
Data Warehousing CIS 4301 Lecture Notes 4/20/2006.
Chapter 13 The Data Warehouse
Three tier Architecture of Data Warehousing
What is OLAP OLAP allows to model data in a multidimensional way like a data cube in order to look for the data from many perspectives.
SQL Server Analysis Services Fundamentals
MANAGING DATA RESOURCES
Types of OLAP Servers.
Introduction to Essbase
DataMart (Data Warehouse) Tool:
A New Storage Engine Specialized for MOLAP
Introduction of Week 9 Return assignment 5-2
Data Warehouse.
Presentation transcript:

Introduction to OLAP / Microsoft Analysis Services Introduction to OLAP and Analysis Services from Microsoft (ONLY for INTERNAL USE) Josef Schiefer IBM Watson Research Center josef.schiefer@us.ibm.com

Introduction to OLAP / Microsoft Analysis Services What is OLAP? Online Analytical Processing - coined by EF Codd in 1994 paper contracted by Arbor Software* Generally synonymous with earlier terms such as Decisions Support, Business Intelligence, Executive Information System OLAP = Multidimensional Database MOLAP: Multidimensional OLAP (Arbor Essbase, Oracle Express) ROLAP: Relational OLAP (Informix MetaCube, Microstrategy DSS Agent)

Introduction to OLAP / Microsoft Analysis Services OLAP is FASMI Fast Analysis Shared Multidimensional Information Nigle Pendse definiert OLAP als "Fast Analysis of Shared Multidimensional Information", also als "Schnelle Analyse von gemeinsam genutzten multidimensionalen Informationen“ Schnell bedeutet, daß das System für die meisten Abfragen nicht länger als 5 Sekunden dauern dürfen. Nur sehr komplexe Abfragen dürfen maximal 20 Sekunden dauern. Der Analytiker soll nicht durch lange Antwortzeiten des Systems abgelenkt werden. Analyse bedeutet, daß das System bereits Geschäftslogik und statistische Analyse (die für Anwendungsprogramme relevant sind) beherrschen soll. Die Analyse Funktionen sollen dem Benutzer auf eine möglichst intuitive Art zur Verfügung stehen. Gemeinsam genutzt bedeutet, daß das System mehrere Benutzer gleichzeitig bedienen kann. Multidimensional (eine Schlüsselanforderung an OLAP) bedeutet, daß das System mehrdimensionale Sichten auf die Daten zur Verfügung stellen muß. Informationen sind die Daten und abgeleitete Informationen, die von Anwendungsprogrammen angefordert werden. Nigel Pendse, Richard Creath - The OLAP Report

Introduction to OLAP / Microsoft Analysis Services Cubes A cube stores information in a multidimensional structure and is the central object in a multidimensional database. Each cube contains a set of dimensions and measures. Dimensions are derived from the tables and columns in your data that provide the categories you want to analyze. Measures are the quantitative data derived from your data columns - Würfel ist zentrales Element bzw. Konstrukt von OLAP Dient zum Speichern der abgefragten Daten - Jeder Würfel enthält eine Menge von Dimensionen und Maßzahlen - Maßzahlen sind quantitative Daten, die von einem DB-Feld abgeleitet werden

Introduction to OLAP / Microsoft Analysis Services Dimensions The dimensions you build should be distinct categories you want to add to cubes in your OLAP database. example: geography, time, or employee dimensions represented in the picture - Dimensionen sollten klare, sinnvolle Kategorien/Klassen aufweisen - Dimensionen sind orthogonal (unabhängig) voneinander - Sie definieren einen Hyper-Cube (siehe Bild)

Introduction to OLAP / Microsoft Analysis Services Cube and Dimensions Dimensions: Product, Region, Time Product Region Time Industry Country Year Category Region Quarter Product City Month Week Office Day Hierarchical summarization paths Region W S N Product Gel Juice Cola Milk Cream Soap Month 1 2 3 4 7 6 5

Dimensions and Hierarchy Introduction to OLAP / Microsoft Analysis Services Dimensions and Hierarchy Dimensions are the categories used to organize or describe analysis information Dimensions are used to navigate the information and to summarize the details into more aggregate data. Frequently used dimensions include time periods, geography, products, organization, and so on. Often dimensions are hierarchical (World - Continents - Countries) 1) Dimensionen dienen zum Klassifizieren der Daten. 2) Dimensionen erleichtern das Navigieren der Informationen und das Aggegieren bzw. Zusammenfassen der Daten 3) Häufige Dimensionen sind Zeit, Region, Produkt, Organisation 4) Dimensationen sind häufig hierarchisch

Measures = numercial Values Introduction to OLAP / Microsoft Analysis Services Measures = numercial Values Measures are the quantitative data in an OLAP database. For example, values such as sales, budget, cost, and so on, are all examples of measures. Measure values are organized in data cubes according to dimensions 1) Maßzahlen sind numerische Werte für quantitative Daten in einer OLAP Datenbank 2) Beispiele sind Umsatz, Budget, Kosten 3) Maßzahlen können nach ihren Dimensionen in einem Datenwürfel dargestellt werden Jede Maßzahl hängt von einer Menge von Dimensionen ab. Diese bilden den Kontext einer Variable (z.B. Verkaufszahlen hängt von Produkt, Region, Zeit)

Introduction to OLAP / Microsoft Analysis Services Aggregations Aggregations greatly improve query efficiency and response time. A cube can hold a number of aggregations. The aggregation amount is based on several factors - the size of the data, the amount of storage space you allocate for aggregation storage, the mode of storage you select, and how much you want to optimize the aggregations design. - Entlang von Attribut-Hierarchien können Daten aggregiert (verdichtet) werden und sind so auf verschiedenen Aggregierungsstufen für Analysen zugreifbar. - Aggregationen verbessern Abfrage-Effizienz und Antwortzeit - Ausmaß der Aggregation hängt von mehreren Faktoren ab * Menge der Daten * Menge Speicherplatz * Art des Speicherplatzes * Optimierungziel

Introduction to OLAP / Microsoft Analysis Services Primary OLAP Problems Rigid, inflexible architectures MOLAP or ROLAP Significant scalability problems Data explosion and sparsity Poor distributed client/server implementation Separation of data warehousing from OLAP tools Lack of integration between user tools and OLAP Difficult to prototype, develop, deploy Time and expense - starre, inflexible Architekturen * MOLAP - Optimiert auf mehrdimensionale Daten * ROLAP - Optimiert auf Transaktionen, effizient nur bei wenigen Dimensionen - Skalierungsprobleme * riesen Datenmengen * „Sparsity“ - dünn besetzte Datenwürfel - Würfel ist zeitweise großteils leer * Verteilung der Implementierung auf Client/Server ... derzeit meist nur Serverseitig (Bsp. Cache) - Trennung von Data Warehouse und OLAP Tools * Mangelhafte Integration Anwendungssoftware, Anwender-Tools und OLAP - Schwierig zu Entwickeln, Einsetzen, Installieren * zeit- und kostenintensiv

Introduction to OLAP / Microsoft Analysis Services MS-AS: Architecture Microsoft Analysis Services are optimized for all OLAP architectures and offers seamless integration MOLAP: aggregations & details managed in an efficient multidimensional store ROLAP: aggregations created in relational store HOLAP: different things to different vendors Aggregations: details in relational, aggregations in MOLAP store Partitions: single logical cube physically divided into multiple MOLAP and ROLAP partitions Virtual cubes: “view-like” join of multiple MOLAP and ROLAP cubes MS-AS unterstützt alle OLAP Archtekturen und bietet eine nahtlose Integration (eine der großen Stärken!!) - MOLAP: Aggregationen & Detailinformationen werden in einem effizienten mehrdimensionalen Datenspeicher verwaltet - ROLAP: Aggregationen werden aus relationalen Datenquellen erzeugt - HOLAP: * Aggregation: Details werden in relationalen, Aggregationen in MOLAP Datenspeicher gehalten * Partitionierung: logischer Datenwürfel kann sich physikalisch aus mehreren MOLAP oder ROLAP Partitionen zusammensetzen * Virtuelle Würfel: View für OLAP-Würfel - ermöglicht mehrere Würfel zusammenzufassen - ermöglicht beschränkte Sicht auf einen Würfel

Introduction to OLAP / Microsoft Analysis Services MS-AS: Scalability MS-AS offer major innovation Data explosion managed by partial pre-aggregation Automatic elimination of sparse storage Partitioned cubes parallel query processing across clustered servers fine tuning of aggregations, to better manage performance and disk space trade-offs 1) Plato bietet wichtige Neuerungen *) Große Datenmengen werden teilweise voraggregiert *) Automatische Beseitigung von „Sparse“ Storage 2) Paritionierte Würfel *) Durchführung von parallele Abfragen über geclusterte Server (Express Server Orcacle) *) fines Tuning von Aggregationen um einen besseren Kompromiß zwischen Performance und Disk Space einzugehen 3) Kooperatives Caching zwischen Client und Server *) Minimiert Netzwerkverkehr

Introduction to OLAP / Microsoft Analysis Services MS-AS: Scalability Cooperative client/server query management and caching network traffic minimized server queries processed efficiently Microsoft Data Cube Service desktop component ships with next release of Office used with Excel, Access, and Web supports local, offline usage 2) Kooperatives Caching und Query-Verarbeitung zwischen Client und Server *) Queries können effizient und schnell durchgeführt werden *) Minimiert Netzwerkverkehr 3) Microsoft Data Cube Service *) Desktop Komponenten werden werden nächsten Auslieferung von Office dabei sein *) wird in Excel, Access und Web (IIS) eingebaut sein *) ermöglicht Offline-Zugriff

Microsoft Data Cube Service Introduction to OLAP / Microsoft Analysis Services Microsoft Data Cube Service Basic architecture: Cache query results and metadata, not disk pages. Algorithms deduce missing data and transform queries Aggregation Filtering Combination Instant reply to cached queries 1) Grundlegendes Ziel vom Microsoft Data Cube Service *) Caching von Abfrageergebnissen und Metadaten - aber nicht auf von Disk Pages 2) Algorithmen ergänzen fehlende Daten und transformieren Quieries *) Aggregation *) Filterung *) Verbindung/Kombination von Datenwürfeln 3) Sofortige Antwort auf gecachte Queries (materialized cube...)

Introduction to OLAP / Microsoft Analysis Services MS Data Cube Benefits Efficient distribution of query and calculation processing across client & server Single component spans Microsoft desktop and server platforms & products Unifies the MD data access story across Excel, MS-AS, and SQL Server Enables Microsoft to establish industry standard for MD data access Basis for MS-AS and Excel mobile story 1) Effiziente Verteiluntung von Queries und Berechnungen auf Client & Server 2) einfache Komponenten decken Desktop/Server/Produkte ab 3) Ermöglicht MD Datenzugriff Excel, Plato und SQL-Server 4) Ermöglicht Microsoft einen Industrie Standard für Mehrdimensionalen Datenbankzugriff festzulegen 5) Ermöglicht die Offline-Zugriff auf DWh-Daten

Introduction to OLAP / Microsoft Analysis Services MS-AS: Integration The Microsoft Analysis Services integrate the maintenance of OLAP with the underlying data warehouse Design the DW structure Create the DW tables/cubes Populate the DW tables/cubes Maintain by incremental loads Optimize by actual usage patterns Manage users, scripts, usage, metadata Multiple data sources (not just SQLS) Plato bezieht die Maintenance/Wartung des zugrundeliegenden Data Warehouses mit ein: - Design der DW Struktur - Erzeugen von DW Tables/Cubes - Befüllung der Tables/Cubes - Unterstützung von inkrementellen Updates/Loads - Optimierung durch Beachtung Zugriffsmuster - Verwaltet User, Skripts, Zugriff, Metadaten - Unterstützung von meheren Datenquellen (relational, multidimensional...)

Introduction to OLAP / Microsoft Analysis Services MS-AS: Integration OLE DB for OLAP & ADO MD based upon existing data access technology establishes industry standard for MD data access OLE DB/ODBC enable MS-AS to access data in all major RDBMs Third party client applications 1) OLE DB for OLAP & ADO MD *) basiert auf bestehenden Datenbank Technologie (DAO-ODBC - OLE DB) *) eigener Industriestandard für mehrdiemensionalen Datenbankzugriff (--> MDX) 2) OLE DB/ODBC ermöglicht Zugriff auf jeglich RDMBS (DB2, ORCALE, INFORMAX) 3) Client-Applikationen können von leicht von Drittanbietern erstellt werden. Plato bildet mehr oder minder nur eine klar definierte Schnittstelle

OLAP Problem: Complexity Introduction to OLAP / Microsoft Analysis Services OLAP Problem: Complexity OLAP products are traditionally difficult to configure, develop, and deploy Arcane tools Heavy consulting Poor integration 1) OLAP Produkte sind normalerweise schwer zu konfigurieren, zu entwickeln, zu installieren *) obskure Tools *) schwierige Beratung *) schwache Integration

Introduction to OLAP / Microsoft Analysis Services MS-AS: Complexity Intuitive User Interface Wizards, intuitive dialogs, and graphics simplify complex tasks without code Integrated into Microsoft Management Console MS-AS’s TCO will be very low cost of NT Server platform leveraged investment in relational technology wide availability of client applications 1) Intuitive Benutzeroberfläche *) Wizards, intuitive Dialog vereinfachen komplexe Aufgabe *) vollkommene Integration in Microsoft Management Console 2) Total Cost of Ownership sehr niedrig *) Kosten für NT-Server *) Ausnützung von Investionen in relationale Technologie *) große Verfügbarkeit von Client-Applikationen (OLE-DB, Office etc)

3 Tier Architecture & Components Introduction to OLAP / Microsoft Analysis Services 3 Tier Architecture & Components DCube OLE DB for OLAP Client Tier Excel ActiveX Controls Third Party Applications ADO MD Data selection & navigation Presentation and charting What-if formulas Client side caching Desktop object model Offline usage MOLAP ROLAP HOLAP Data Warehouse Tier MS-AS Server SQL Server Multidimensional calcs MOLAP/ROLAP/HOLAP data Modeling/aggregations Security Metadata management Server side caching Administrative tools Server object model Query distribution OLTP Source Tier OLE DB DTS RDBMs

Let‘s go to the demonstration ... 