G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.

Slides:



Advertisements
Similar presentations
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud.
Advertisements

(Program Director: George Komar)
ESTO Advanced Component Technology 11/17/03 Laser Sounder for Remotely Measuring Atmospheric CO 2 Concentrations GSFC CO 2 Science and Sounder.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Status of DAWN Data from NASA GRIP Campaign Michael Kavaya NASA Langley Research Center GRIP Science Team Meeting May 9-10, 2012.
Lecture 12 Content LIDAR 4/15/2017 GEM 3366.
Calibration Scenarios for PICASSO-CENA J. A. REAGAN, X. WANG, H. FANG University of Arizona, ECE Dept., Bldg. 104, Tucson, AZ MARY T. OSBORN SAIC,
Uncertainty in Cloud Aerosol Transport System (CATS) Products and Measurements Presented by Patrick Selmer Goddard advisor: Dr. Matthew McGill Assisted.
Performance characteristics and design trades for an ISS Hybrid Doppler Wind Lidar G. D. Emmitt and S. Wood Simpson Weather Associates Charlottesville,
The HARLIE IHOP Measurements Geary Schwemmer, Belay Demoz NASA/GSFC, David Miller, Sangwoo Lee, Natalie Deming SSAI, Gerry McIntire RSC, Sonia Garcia USNA,
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
6 July 2006First NDACC Water Vapor Working Group Workshop, Bern, Switzerland. 1 NDACC and Water Vapor Raman Lidars Thierry Leblanc JPL - Table Mountain.
Code 912, Principle Investigator: Mr. Bruce Gentry NASA Academy Research Associate Jeremy Dobler.
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Science Objectives for the ATHENA-OAWL Venture Tech Airborne Mission M. Hardesty CIRES University of Colorado/NOAA S. Tucker and C. Weimer Ball Aerospace.
S. Tucker, Ball Aerospace & Technologies Corp. Working Group on Space-Based Wind Lidar 17 October 2012 S. Tucker, Ball Aerospace & Technologies Corp. Working.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Space Lidar Working Group July 2008 Status of the Tropospheric Wind lidar Technology Experiment (TWiLiTE) Instrument Incubator Program Bruce Gentry 1,
SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique Martial Haeffelin SIRTA Coordinator CLOUDNET Meeting, Paris May 2002.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
UVC Airborne Holographic Lidar Transceiver Marc Hammond, David Huish, Tom Wilkerson, Scott Cornelsen Space Dynamics Laboratory Utah State University
Scaling Surface and Aircraft Lidar Results for Space-Based Systems (and vice versa) Mike Hardesty, Barry Rye, Sara Tucker NOAA/ETL and CIRES Boulder, CO.
B. Gentry/GSFCGTWS 2/26/01 Doppler Wind Lidar Measurement Principles Bruce Gentry NASA / Goddard Space Flight Center based on a presentation made to the.
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
G O D D A R D S P A C E F L I G H T C E N T E R Status of the Tropospheric Wind Lidar Technology Experiment (TWiLITE) IIP Project Bruce Gentry, M. McGill,
Update on Hybrid Detection DWL Study* G. D. Emmitt WG on Space-based Lidar Winds Oxnard, CA 7-9 February, 2001 *funded by the IPO.
Integrating Airborne DWL and PBL Models in Real Time G.D. Emmitt, C. O’Handley, S. A. Wood and S. Greco Simpson Weather Associates WGSBLW Miami 2007.
Wind Profile Measurements with VisibleWind: Further Developments Tom Wilkerson, Alan Marchant, Bill Bradford, Tom Apedaile, Cordell Wright & Eve Day Space.
Update on NASA’s Sensor Web Experiments Using Simulated Doppler Wind Lidar Data S. Wood, D. Emmitt, S. Greco Simpson Weather Associates, Inc. Working Group.
LaRC Wind Observations with the VALIDAR Doppler Lidar Grady J. Koch 1, Jeffrey Y. Beyon 2, Bruce W. Barnes 1, and Michael J. Kavaya 1 1 NASA Langley Research.
Institut für Physik der Atmosphäre Rayleigh-Brillouin Scattering Experiment with Atmospheric Lidar from a Mountain Observatory Oliver Reitebuch, Christian.
NASA ESTO ATIP Laser Sounder for Remotely Measuring Atmospheric CO 2 Concentrations 12/12/01 NASA Goddard - Laser Remote Sensing Branch 1 James B. Abshire,
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
CLN QA/QC efforts CCNY – (Barry Gross) UMBC- (Ray Hoff) Hampton U. (Pat McCormick) UPRM- (Hamed Parsiani)
SLWG Feb 2007 Progress on the TWiLITE Direct Detection Doppler Lidar Instrument Incubator Program B. Gentry 1, G. Schwemmer 6, M. McGill 1, M. Hardesty.
CLOUD PHYSICS LIDAR for GOES-R Matthew McGill / Goddard Space Flight Center April 8, 2015.
(to optimize its vertical sampling)
KHz SLR Station Graz Graz kHz LIDAR Georg Kirchner, Franz Koidl, Daniel Kucharski Institute for Space Research SLR Station Graz / Austria Poznan, Oct.
A new method for first-principles calibration
NASA Goddard - Laser Remote Sensing Branch 1/16/02 JBA 1 3/12/02 NASA/GSFC - Laser Remote Sensing Branch 1 Mars Orbital Lidar Small Orbital Planetary Lidar.
CO 2 an important driver for climate change. Currently only approximately half of the CO 2 produced by man can be accounted for in the atmosphere and oceans,
Ball Aerospace & Technologies Corporation -
GWOLF and VALIDAR Comparisons M. Kavaya & G. Koch NASA/LaRC D. Emmitt & S. Wood SWA Lidar Working Group Meeting Sedona, AZ January 2004.
Challenges in PBL and Innovative Sensing Techniques Walter Bach Army Research Office
Overview of HARLIE Measurement Capabilities David Miller 1, Geary Schwemmer 2, Sangwoo Lee 1, Tom Wilkerson 3 1 Science Systems and Applications, Inc.
Planned Simulations for New Nature Run G. D. Emmitt, S. Greco, S. A. Wood and C. O’Handley Simpson Weather Associates OSEE meeting November 16, 2006.
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Institutions: University of Miami; University.
George Avdikos, PhD Raymetrics S.A. 1. Executive Summary 2  Founded in Athens, Greece in 2002  Mainly professionals with extensive experience and postgraduate.
Department of Earth Sciences, M.Sc. Wind Power Project Management
Early VALIDAR Case Study Results Rod Frehlich: RAL/NCAR Grady Koch: NASA Langley.
Lidar winds from GEO: The Photons to Winds Conversion Efficiency
Lidar winds from GEO: The Photons to Winds Conversion Efficiency
HARGLO-3: Wind Intercomparisons During IHOP
B. Demoz1, B. Gentry2, T. Bacha1, K. Vermeesch2,5, H. Chen2,5,
Clouds, shear and the simulation of hybrid wind lidar
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
LASE Measurements of Water Vapor During IHOP
GAJENDRA KUMAR EC 3rd YR. ROLL NO
Validation of airborne 1
J.-P. Cariou, R. Parmentier, L. Sauvage, LEOSPHERE, France
GLAS Cloud Statistics and Their Implications for a Hybrid Mission
NPOESS P3I & Follow-on Threshold Operational Mission
BalloonWinds-GroundWinds Project Summary
HARGLO-2 Wind Intercomparisons
GroundWinds Demonstration Campaign Analysis Update
Presentation transcript:

G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research Facility Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable Wintergreen, VA June, 2009

G O D D A R D S P A C E F L I G H T C E N T E R NASA Wind Lidar Science (WLS) Experiment at Howard Beltsville Research Facility GOALS Develop understanding of direct detection (GLOW) and coherent Doppler lidar (VALIDAR) wind performance for various cloud and aerosol loading conditions (pollution, cirrus) Develop a seasonal data base archive for wind measurements. Intercomparison of coherent and direct detection Doppler lidars Compare Doppler lidar wind data to other sensors (Profiler, Radiosonde, ACARS). Hands-on student training Funded by NASA SED, ROSES07-WLS (Dr. Ramesh Kakar)

G O D D A R D S P A C E F L I G H T C E N T E R Measurement summary Vertical resolution=250 m  t=3 min Altitude range= 2 to 5 km Elevation angle= 45 deg Scan pattern = 4 directions: (N,S,E,W)+vertical Dwell per LOS = 30 sec GLOW -February 24, 2009 RS92 Sonde 1RS92 Sonde 2 RS92 Sonde 1RS92 Sonde 2 m/s deg Goddard Lidar Observatory for Winds (GLOW) mobile Doppler lidar Direct detection Doppler Lidar system Measures clear air wind profiles using molecular backscatter Serves as technology testbed for air and space based lidar technologies Multiple field campaigns since MHz wind profiler and local radiosonde launches provide correlative measurements for the wind lidar systems Direct Detection Doppler lidar profiling at Howard Beltsville Research Facility GLOW mobile Doppler lidar

G O D D A R D S P A C E F L I G H T C E N T E R Sampling strategy: LOS scans at multiple azimuths in repeating cycle (5-10 LOS /cycle) Step stare scan pattern at fixed elevation angle (Typ. 45 deg) : 4 cardinal directions (N,S,E,W) + vertical Signals are range gated in 45 m bins, integrated and stored every 10 s. Three dwells (30s total) per LOS. Total time to complete scan: ~3 min Post processing: data averaged in range (default 250 m) data can be accumulated in time by LOS (multiples of base 3 min) corrections for atmos. T and P (RBS)

G O D D A R D S P A C E F L I G H T C E N T E R Wavelength354.7 nm Telescope/Scanner Area0.116 m 2 Laser Linewidth (FWHH)80 MHz Laser Energy/Pulse 25 50pps Etalon FSR 12 GHz Etalon FWHH1.7 GHz Edge Channel Separation5.1 GHz Locking Channel Separation 1.7 GHz Interference filter BW (FWHH)150 pm PMT Quantum Efficiency22% GLOW Lidar System Parameters

G O D D A R D S P A C E F L I G H T C E N T E R GLOW Signal Dynamic Range

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009  z=250 m ;  t=3 min Clouds RS92 sonde 2 km ~45 min Signals exceed max count rate below 2 km. PMTs gated off

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009 GLOW profile: 0126 UT Sonde launched: 0059 UT GLOW 3 min average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R Exploring Differences in Spatial and Temporal Sampling- GLOW vs Sonde = sonde altitude at time of lidar measurement. Assumes rise rate of 5 m/s.

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009 GLOW profile: 0150 UT Sonde launched: 0128 UT GLOW 30 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009 GLOW profile: 0417 UT Sonde launched: 0329 UT GLOW 33 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R GLOW-Sonde February 24, 2009 GLOW profile: 0357 UT Sonde launched: 0329 UT GLOW 33 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R March 18, 2009  z=250 m ;  t=3 min

G O D D A R D S P A C E F L I G H T C E N T E R April 9, 2009  z=250 m ;  t=3 min

G O D D A R D S P A C E F L I G H T C E N T E R March 11, 2009  z=250 m ;  t=3 min ; 9 min running average

G O D D A R D S P A C E F L I G H T C E N T E R March 11, 2009  z=100 m ;  t=3 min; 3 min average

G O D D A R D S P A C E F L I G H T C E N T E R Objectives l Demonstrate atmospheric wind measurement capabilities l Prove new concepts and test components l Validate space simulation instrument model Edge Technique Lidar System (1995) Edge Technique Lab Testbed Transmitter Wavelength (nm) :1064 Repetition rate (Hz) :10 Energy per pulse (J) :0.12 Laser bandwidth (MHz) :40 Receiver Telescope diameter (m) :0.406 Interference filter bandwidth (nm) :5 Quantum efficiency :0.40(analog) 0.04(PC) Fabry-Perot interferometer Spectral width FWHM (MHz) :100 Free Spectral Range (GHz) :3 10 sec (100 shot) averaging/LOS; 22 m vertical resolution 1. Korb, C. L, B. Gentry, and S. X. Li, (1997) “Edge Technique Doppler Lidar Wind Measurements with High Vertical Resolution,” Applied Optics, 36, pp PBL Lidar Winds 1

G O D D A R D S P A C E F L I G H T C E N T E R Future Work Continue wind profile data collection. – 2 to 3 days a week – Coordinate with NWAVES Examine representativeness of data sampling and averaging schemes Continue inter-comparisons with other wind sensors (VALIDAR, ACARS, sondes, profiler Examine effects of clouds and aerosols on the molecular wind measurement using Raman lidar backscatter products as a reference Resurrect the double edge aerosol receiver for PBL studies

G O D D A R D S P A C E F L I G H T C E N T E R Backups

G O D D A R D S P A C E F L I G H T C E N T E R Direct Detection Doppler lidar profiling at Howard Beltsville Research Facility Measurement summary Vertical resolution=250 m  t=3 min Altitude range= 2 to 5 km Elevation angle= 45 deg Scan pattern = 4 directions: (N,S,E,W)+vertical Dwell per LOS = 30 sec Goddard Lidar Observatory for Winds (GLOW) mobile Doppler lidar Direct detection Doppler Lidar system Measures clear air wind profiles using molecular backscatter Serves as testbed for air and space based lidar technologies Multiple field campaigns since 2000 Line of sight wind profiles are sequentially measured at 4 azimuth angles (N,S,E,W)+vertical. The multiple direction LOS profiles are combined to produce vertical profiles of horizontal wind speed and direction (right)

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009 GLOW profile: 0417 UT Sonde launched: 0329 UT GLOW 33 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R GLOW-Sonde February 24, 2009 GLOW profile: 0417 UT Sonde launched: 0329 UT GLOW 33 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009 GLOW profile: 0126 UT Sonde launched: 0059 UT GLOW 33 min running average; Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R March 11, min

G O D D A R D S P A C E F L I G H T C E N T E R March 11, min

G O D D A R D S P A C E F L I G H T C E N T E R March 11, min 100 m

G O D D A R D S P A C E F L I G H T C E N T E R

Combined Molecular Sensitivity vs. T and v T= 150K to 350K, v = 0 to 100 m/s

G O D D A R D S P A C E F L I G H T C E N T E R March 31, 2009 GLOW profile: 0150 UT Sonde launched: 0128 UT Sonde averaged to  z=250 m

G O D D A R D S P A C E F L I G H T C E N T E R March 23, 2009  z=250 m ;  t=3 min

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009

G O D D A R D S P A C E F L I G H T C E N T E R February 24, 2009

G O D D A R D S P A C E F L I G H T C E N T E R March 30, 2009  z=250 m ;  t=3 min

G O D D A R D S P A C E F L I G H T C E N T E R March 31, 2009 GLOW profile: 0140 UT Sonde launched: 0128 UT GLOW 30 min running average; Sonde averaged to  z=250 m