Unit 1. Matter and Change Chapter 1 and 3
Do Now: What is matter as described in Chemistry?
Chapter 1 & 3 Objective Distinguish between: intensive and extensive properties Physical & chemical changes/properties Classify matter
Matter and its Properties It’s Classified! But first what is Scientific Method and what does it involve?
Properties & Changes in Matter Extensive vs. Intensive Physical vs. Chemical
A. Extensive vs. Intensive Extensive Property depends on the amount of matter present ex,.- Intensive Property depends on the identity of substance, not the amount Ex.-
A. Extensive vs. Intensive Extensive Property depends on the amount of matter present ex,.- Volume, mass, Energy Intensive Property depends on the identity of substance, not the amount Ex.- melting point, boiling point, conduct electricity or heat WHAT ABOUT DENSITY??
A. Extensive vs. Intensive Examples: boiling point volume mass density conductivity
A. Extensive vs. Intensive Examples: boiling point…… intensive Volume …. extensive Mass ….. extensive Density ….. intensive Conductivity ….. intensive
PROPERTY B. Physical vs. Chemical Physical Property can be observed without changing the identity of the substance Chemical Property describes the ability of a substance to undergo changes in identity
B. Physical vs. Chemical Examples: melting point flammable density magnetic tarnishes in air physical chemical physical chemical
CHANGE C. Physical vs. Chemical Physical Change changes the form of a substance without changing its identity properties remain the same Chemical Change changes the identity of a substance products have different properties
B. Physical vs. Chemical Signs of a Chemical Change change in color or odor formation of a gas formation of a precipitate (solid) change in light or heat
B. Physical vs. Chemical Examples: rusting iron dissolving in water burning a log melting ice grinding spices
B. Physical vs. Chemical Examples: rusting iron dissolving in water burning a log or charcoal melting ice grinding spices? chemical physical chemical physical
In the example of burning of charcoal, carbon and oxygen are the reactants in the combustion reaction. Carbon dioxide is the product. carbon + oxygen carbon dioxide C + O2 CO2 (reactants) (product) Properties and Changes in Matter
Homework Review Scientific Method: Read page 12 – 16 Q 17 Complete - Work sheet
STATE OF MATTER Chapter 3
Do Now Name the State of Matter How do they differ?
States of Matter There are Four state of matter A. Solid B. Liquid C. Gas D. Plasma State of matter depends on Kinetic Energy between the particles
A. Kinetic Molecular Theory KMT Particles of matter are always in motion. The kinetic energy (speed) of these particles increases as temperature increases.
Four States of Matter A. Solids very low KE - particles vibrate but can’t move around fixed shape fixed volume
Four States of Matter B. Liquids low KE - particles can move around but are still close together variable shape fixed volume
Four States of Matter C. Gases high KE - particles can separate and move throughout container variable shape variable volume
Four States of Matter D. Plasma very high KE - particles collide with enough energy to break into charged particles (+/-) gas-like, variable shape & volume stars, fluorescent light bulbs, CRTs
SOLUTIONS AND MIXTURES
Objective: Classification of Matter DO NOW: What is a solution? Describe the difference between a heterogeneous and homogenous mixture
A. Pure Substances Element composed of identical atoms EX: copper wire, aluminum foil
A. Pure Substances Compound composed of 2 or more elements in a fixed ratio properties differ from those of individual elements EX: table salt (NaCl)
A. Pure Substances Law of Definite Composition A given compound always contains the same, fixed ratio of elements. Law of Multiple Proportions Elements can combine in different ratios to form different compounds.
A. Pure Substances For example… Two different compounds, each has a definite composition.
Pure Substances (constant composition) Elements Listed on the Periodic Table Cannot be broken down into unique components Na, Cl, Al, O 2, S 8 Compounds Made of elements that are chemically joined Can be broken down NaCl, H 2 O, AlCl 3, H 2 SO 4
B. Mixtures Variable combination of 2 or more pure substances. HeterogeneousHomogeneous
B. Mixtures (variable composition) Homogeneous – Solutions evenly distributed Heterogeneous not evenly distributed
B. Mixtures Solution homogeneous very small particles no Tyndall effect Tyndall Effect
B. Mixtures Colloid heterogeneous medium-sized particles Tyndall effect particles don’t settle EX: milk
B. Mixtures Suspension heterogeneous large particles Tyndall effect particles settle EX: fresh-squeezed lemonade
C. Mixtures Examples: mayonnaise muddy water fog saltwater Italian salad dressing
C. Mixtures Examples: mayonnaise muddy water fog saltwater Italian salad dressing colloid suspension colloid solution suspension
A. Matter Flowchart MATTER Can it be physically separated? Homogeneous Mixture (solution) Heterogeneous MixtureCompoundElement MIXTUREPURE SUBSTANCE yesno Can it be chemically decomposed? noyes Is the composition uniform? noyes ColloidsSuspensions
A. Matter Flowchart Examples: graphite pepper sugar (sucrose) paint soda
A. Matter Flowchart Examples: graphite pepper sugar (sucrose) paint soda element hetero. mixture compound hetero. mixture solution
Tea – Homogeneous Mixture
Air – Homogeneous Mixture
Alloys – Homogeneous Mixtures
Cereal – Heterogeneous Mixture
Sand – Heterogeneous Mixture
Separating Mixtures Only a physical change- no new matter Filtration - separate solids from liquids with a barrier (filter paper) Distillation - separate liquids because of different boiling points Heat mixture Catch vapor in cooled area Chromatography - different substances are attracted to paper or gel, so move at different speeds
Separating Mixtures cont…. Crystallization - results in formation of solid particles of a substance from a solution containing the dissolved substance Sublimation – separation when a solid changes to a vapor without melting or going through a liquid phase
Filtration Distillation Chromatography
d. Crystallization e. Sublimation Ex: rock candyEx: Dry Ice
Homework Pg 83 – Q 15, 17 Pg 94 & 95 – Q 42, 43, 48, 58, 63
The Periodic Table
A. Mendeleev Dmitri Mendeleev (1869, Russian) Organized elements by increasing atomic mass. Elements with similar properties were grouped together. There were some discrepancies. C. Johannesson
A. Mendeleev Dmitri Mendeleev (1869, Russian) Predicted properties of undiscovered elements. C. Johannesson
B. Moseley Henry Moseley (1913, British) Organized elements by increasing atomic number. Resolved discrepancies in Mendeleev’s arrangement. C. Johannesson
II. Organization of the Elements
A. Metallic Character Metals Nonmetals Metalloids C. Johannesson
B. Blocks Main Group Elements Transition Metals Inner Transition Metals C. Johannesson
Do Now: Classify the following as either a METAL, NON-METAL or METALLOID: a. Au b. Si c. Br
Periods and Families Periods: horizontal rows on the periodic table physical and chemical properties change somewhat regularly across a row. Elements closer to each other in the same period tend to be similar properties than those that are farther apart. Families: vertical rows of elements, aka groups Each group contains similar chemical properties
Types of Elements METALS: Shiny Conductors of heat and electricity Most metals are malleable (can be pounded into thin sheets; a sugar cube sized chunk of gold can be pounded into a thin sheet which will cover a football field), Most metals are ductile (can be drawn out into a thin wire).
Metals cont….. All are solids at room temp (except Mercury, which is a liquid) Metals tend to have low ionization energies, and typically lose electrons (i.e. are oxidized) when they undergo chemical reactions Alkali metals are always 1+ (lose the electron in s subshell) Alkaline earth metals are always 2+ (lose both electrons in s subshell) Compounds of metals with non-metals tend to be ionic in nature.
Types of Elements NON- METALS: Vary greatly in appearance Non-lustrous Poor conductors of heat and electricity The melting points of non-metals are generally lower than metals Seven non-metals exist under standard conditions as diatomic molecules: H 2 (g) N 2 (g) O 2 (g) F 2 (g) Cl 2 (g) Br 2 (l) I 2 (l) (volatile liquid - evaporates readily)
Non-Metals cont…….. Nonmetals, when reacting with metals, tend to gain electrons (typically attaining noble gas electron configuration) and become anions: Nonmetal + Metal -> Salt Compounds composed entirely of nonmetals are molecular substances (not ionic)
Types of Elements Metalloids: Elements may share properties of metals and non-metals. A stair-step line separates the metals from the nonmetals on the periodic table.
Metalloids Properties: All metalloids are solids at room temperature. Less malleable than metals but not as brittle as nonmetals. Metalloids tend to be semiconductors of electricity. (intermediate between metals and nonmetals).
Metalloids Properties: Metalloids are used in semiconducting materials found in computers, calculators, televisions and radios. Elements include: boron, silicon, germanium, antimony
Noble Gases Noble Gases - the elements in Group 18 of the periodic table. They are considered nonmetals. These elements are generally unreactive. All are gases at room temperature. Examples: neon, argon, krypton, xenon (all used in lighting) and helium.
DO NOW: Name an element that is: a. An element that is brittle and conducts electricity b. An element that is malleable c. An element that has tendency to become an anion
Group Practice Look at Page 95 – Insert Questions
Law of Conservation of Matter: Matter is neither created nor destroyed. Since chemical reactions cannot create or destroy atoms, chemical equations representing the reactions must always be BALANCED. Mass reactants = Mass products
% by Mass of Substance Mass of Element Percent by mass =X 100 Mass of Compound