Logic Design with MSI Circuits

Slides:



Advertisements
Similar presentations
Digital Logic Design Week 7 Encoders, Decoders, Multiplexers, Demuxes.
Advertisements

Combinational Circuits
Functions and Functional Blocks
CHAPTER 6 Functions of Combinational Logic
Design of Arithmetic Circuits – Adders, Subtractors, BCD adders
Combinational Logic Chapter 4.
Digital Fundamentals Floyd Chapter 6 Tenth Edition
Combinational Logic Building Blocks
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
EE2174: Digital Logic and Lab
DIGITAL SYSTEMS TCE OTHER COMBINATIONAL LOGIC CIRCUITS DECODERS ENCODERS.
1 Chapter 6 Functions of Combinational Logic. 2 Figure 6--1 Logic symbol for a half-adder Adder.
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Arithmetic Operations and Circuits Lecture 5. Binary Arithmetic let’s look at the procedures for performing the four basic arithmetic functions: addition,
Digital Fundamentals with PLD Programming Floyd Chapter 8
Logic Gates Combinational Circuits
CS 105 Digital Logic Design
Combinational Circuits
Combinational Circuits
Combinational Logic Design
Functions of Combinational Logic
Overview of Chapter 4 °Design digital circuit from specification °Digital inputs and outputs known Need to determine logic that can transform data °Start.
Outline Analysis of Combinational Circuits Signed Number Arithmetic
Combinational Logic Chapter 4. Digital Circuits Combinational Circuits Logic circuits for digital system Combinational circuits the outputs are.
Logical Circuit Design Week 8: Arithmetic Circuits Mentor Hamiti, MSc Office ,
Chap 3. Chap 3. Combinational Logic Design. Chap Combinational Circuits l logic circuits for digital systems: combinational vs sequential l Combinational.
Dr. Ahmed El-Bialy, Dr. Sahar Fawzy Combinational Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
+ CS 325: CS Hardware and Software Organization and Architecture Combinational Circuits 1.
Combinational Circuits
Combinational Logic. Outline 4.1 Introduction 4.2 Combinational Circuits 4.3 Analysis Procedure 4.4 Design Procedure 4.5 Binary Adder- Subtractor 4.6.
Digital Arithmetic and Arithmetic Circuits
Functions of Combinational Logic
Combinational Logic By Taweesak Reungpeerakul
WEEK #9 FUNCTIONS OF COMBINATIONAL LOGIC (DECODERS & MUX EXPANSION)
ECE 3110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Adders, subtractors, ALUs.
Combinational Design, Part 3: Functional Blocks
1 Combinational Logic Design Digital Computer Logic Kashif Bashir
Multiplexers and Demultiplexers, and Encoders and Decoders
CHAPTER 4 Combinational Logic
Karnaugh maps for the binary full adder.
Morgan Kaufmann Publishers
Functions of Combinational Logic By Taweesak Reungpeerakul
CS 105 DIGITAL LOGIC DESIGN Chapter 4 Combinational Logic 1.
Computer Architecture I: Digital Design Dr. Robert D. Kent Logic Design Decoders and Multiplexers.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
Magnitude Comparator A magnitude comparator is a combinational circuit that compares two numbers, A and B, and then determines their relative magnitudes.
Magnitude Comparator Dr. Ahmed Telba.
EKT 121 / 4 DIGITAL ELECTRONICS 1
CHAPTER 2 Digital Combinational Logic/Arithmetic Circuits
1 Combinational Logic EE 208 – Logic Design Chapter 4 Sohaib Majzoub.
A. Yaicharoen 1 1/2551 Logic Design with MSI Circuits วัตถุประสงค์ของบทเรียน  รู้จักวงจรประเภท MSI  เข้าใจการทำงานของวงจร MSI ที่มีใช้ อยู่ทั่วไป  สามารถประยุกต์ใช้วงจร.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
Digital System Design Multiplexers and Demultiplexers, and Encoders and Decoders.
1 DLD Lecture 16 More Multiplexers, Encoders and Decoders.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Logic Design (CE1111 ) Lecture 4 (Chapter 4) Combinational Logic Prepared by Dr. Lamiaa Elshenawy 1.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
MSI Circuits.
Lecture No. 14 Combinational Functional Devices. Digital Logic &Design Dr. Waseem Ikram Lecture 14.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Chap 3. Combinational Logic Design
Multiplexers and Demultiplexers,
Combinational Circuit Design
FUNCTION OF COMBINATIONAL LOGIC CIRCUIT
Chapter 6 Functions of Combinational Logic
Ch 4. Combinational logic
Digital System Design Combinational Logic
Arithmetic Circuits.
Presentation transcript:

Logic Design with MSI Circuits วัตถุประสงค์ของบทเรียน รู้จักวงจรประเภท MSI เข้าใจการทำงานของวงจร MSI ที่มีใช้อยู่ทั่วไป สามารถประยุกต์ใช้วงจร MSI ในการออกแบบวงจรลอจิกแบบต่างๆ ได้ 1/2550 A. Yaicharoen

Type of Circuits หมายเหตุ หนังสือบางเล่มแบ่งวงจรที่มีเกตตั้งแต่ 1,000,000 เกต ขึ้นไป ให้อยู่ในกลุ่ม ULSI (Ultra-large-scale integration) 1/2550 A. Yaicharoen

Multiplexers (MUXs) also called a data selector Input lines consist of - data lines: 2n lines - select lines: n lines there may or may not be an enable line Output line: output line: 1 line 1/2550 A. Yaicharoen

Multiplexer Function Truth table of a 4:1 multiplexer (without enable) Select inputs Output S1 S0 Y I0 1 I1 I2 I3 1/2550 A. Yaicharoen

Multiplexer Function Truth table of a 4:1 multiplexer (with enable) Select inputs Output E S1 S0 Y X 1 I0 I1 I2 I3 1/2550 A. Yaicharoen

Logic Circuit Design using Multiplexer Advantages No need for logic simplification Minimize the IC package count Simplify the logic design 1/2550 A. Yaicharoen

Case 1: Number of inputs is equal to number of select lines Logic Design using MUX Case 1: Number of inputs is equal to number of select lines Design procedure Identify the decimal number corresponding to each minterm in the expression Connect logic 1 level to input lines corresponding to these numbers Connect logic 0 level to the others Connect inputs to selected lines 1/2550 A. Yaicharoen

Case1: Inputs = Select lines a three-variable function using a 8-to-1-line multiplexer 1/2550 A. Yaicharoen

Example f(x,y,z) = m(0,2,3,5) using 8-to-1-line multiplexer 1/2550 A. Yaicharoen

Case 2: Number of inputs is higher than number of select lines Logic Design using MUX Case 2: Number of inputs is higher than number of select lines Procedure 2.1: Reduce the number of inputs to the number of select lines by inspection k-map 1/2550 A. Yaicharoen

Case 2 Truth table of a 3 variable logic circuit Input Output x y z Y f0 1 f2 f4 f6 Input Output x y z Y 1 f1 f3 f5 f7 1/2550 A. Yaicharoen

Case2.1: Reducing Inputs a 3-variable Boolean function using a 4-to-1-line multiplexer 1/2550 A. Yaicharoen

Example f(x,y,z) = m(0,2,3,5) using a 4-to-1-line multiplexer 1/2550 A. Yaicharoen

Reducing Inputs with K-map 1/2550 A. Yaicharoen

Example f(x,y,z) = m(0,2,3,5) 1/2550 A. Yaicharoen

More on Reducing Inputs (a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines. 1/2550 A. Yaicharoen

Example f(x,y,z) = m(0,2,3,5) (a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines. 1/2550 A. Yaicharoen

Reducing 4-input to 3-input 1/2550 A. Yaicharoen

Example f(w,x,y,z) = m(0,1,5,6,7,9,12,15) 1/2550 A. Yaicharoen

Procedure 2.2: Use multiplexer tree Logic Design using MUX Procedure 2.2: Use multiplexer tree when number of inputs exceeds the largest number of inputs on available ICs Can be done by one of these two techniques connect the MSB input to the enable/strobe input connect the MSB input to another multiplexer 1/2550 A. Yaicharoen

Demultiplexers/Decoders Performs the reverse operation of a multiplexer Input lines are: 1 data line n select lines maybe 1 enable Output lines are - 2n output lines 1/2550 A. Yaicharoen

Application Example A multiplexer/demultiplexer arrangement for information transmission 1/2550 A. Yaicharoen

Decoders A n-to-2n-line decoder is a circuit that only one of the output line responds to the n-input data. Number of input:output is n:2n (Note: a demultiplexer is a decoder with an enable input acting as a data input line A BCD to 7-segment decoder is a circuit that 7-bit output will make each segment of the 7-segment lit according to the 4-bit input 1/2550 A. Yaicharoen

3-to-8-line Decoder 1/2550 A. Yaicharoen

Application Example การใช้ 3-to-8-line decoder และ or-gate ในการสร้างวงจร f1(x2,x1,x0) = m(1,2,4,5) และ f2(x2,x1,x0) = m(1,5,7) 1/2550 A. Yaicharoen

Application Example f1(x2,x1,x0) = m(0,1,3,4,5,6) = m(2,7) and f2(x2,x1,x0) = m(1,2,3,4,6) = m(0,5,7) 1/2550 A. Yaicharoen

Application Example f1(x2,x1,x0) = M(0,1,3,5) and f2(x2,x1,x0) = M(1,3,6,7) (a) Using output or-gates. (b) Using output nor-gates. 1/2550 A. Yaicharoen

3-to-8-line decoder using nand-gates 1/2550 A. Yaicharoen

Application Example f1(x2,x1,x0) = m(0,2,6,7) and f2(x2,x1,x0) = m(3,5,6,7) (a) Using output and-gates. (b) Using output nand-gates. 1/2550 A. Yaicharoen

Decoder with Enable Input And-gate 2-to-4-line decoder with an enable input 1/2550 A. Yaicharoen

Encoders - Similar to decoders - Usually number of input lines are more than number of output lines Number of input:output is 2n:n 1/2550 A. Yaicharoen

Binary Adders Binary Half-Adder Binary Full-Adder 1/2550 A. Yaicharoen

si = xi'.yi'.ci+xi'.yi.ci'+xi.yi'.ci'+xi.yi.ci Binary Full-Adder si = xi'.yi'.ci+xi'.yi.ci'+xi.yi'.ci'+xi.yi.ci ci+1 = xi.yi + xi.ci + yi.ci 1/2550 A. Yaicharoen

Parallel Binary Adder Parallel (ripple) binary adder 1/2550 A. Yaicharoen

Binary Subtractor Binary Half-Subtractor Binary Full-Subtractor 1/2550 A. Yaicharoen

Parallel Binary Subtractor Parallel (ripple) binary subtractor 1/2550 A. Yaicharoen

Parallel Binary Adder/Subtractor 1/2550 A. Yaicharoen

Carry Look-ahead Adder From Boolean expression of the F.A. ci+1 = xiyi + (xi+yi)ci Let’s gi = xiyi (carry-generate function) and pi = (xi+yi) (carry-propagate function) c1 = g0 + p0c0 c2 = g1 + p1c1 = g1 + p1(g0 + p0c0) = g1 + p1g0 + p1p0c0 1/2550 A. Yaicharoen

Carry Look-ahead Adder (cont.) c3 = g2 + p2c2 = g2 + p2(g1 + p1g0 + p1p0c0) = g2 + p2g1 + p2p1g0 + p2p1p0c0 ... ci+1 = gi + pigi-1 + pipi-1gi-2 + ... + pipi-1...p1g0 + pipi-1...p0c0 1/2550 A. Yaicharoen

Carry Look-ahead Adder (cont.)    1/2550 A. Yaicharoen

BCD Arithmetic BCD Adder Using a 4-bit binary adder to perform two one digit BCD addition a decimal 6 (binary 0 1 1 0) will be added to the result if the sum output is an invalid BCD or if a carry at the MSB is 1 each BCD adder can be cascaded for adding several BCD digits 1/2550 A. Yaicharoen

BCD Arithmetic BCD Subtractor Convert the subtrahend to its 9’s complement form Add the result to the minuend If the summation result is an invalid BCD code or if the carry from the MSB is 1, add decimal 6 (binary 0 1 1 0) and the end around carry (EAC) to this sum If the summation result is a valid BCD code, the result is negative and in the 9’s complement form 1/2550 A. Yaicharoen

Nine’s Complementer Circuit A 9’s complementer circuit is a circuit designed to convert a decimal digit (in BCD code) to its 9’s complement created by adding binary 1 0 1 0 to the 1’s complement of the number (ignore the carry) (Proof is left as a student exercise) 1/2550 A. Yaicharoen

Arithmetic Logic Unit (ALU) performs arithmetic and logic operations (depends on the selected mode) Read details and example in section 6.6 1/2550 A. Yaicharoen

Comparators A comparator is a circuit that compares the magnitudes of two binary numbers Input: Ai, Bi, Gi, Ei, Li Gi= 1 when Ai-1Ai-2...A1A0 > Bi-1Bi-2...B1B0 Ei= 1 when Ai-1Ai-2...A1A0 = Bi-1Bi-2...B1B0 Li= 1 when Ai-1Ai-2...A1A0 < Bi-1Bi-2...B1B0 Output: Gi+1, Ei+1, Li+1 Gi+1= 1 when AiAi-1...A1A0 > BiBi-1...B1B0 Ei+1= 1 when AiAi-1...A1A0 = BiBi-1...B1B0 Li+1= 1 when AiAi-1...A1A0 < BiBi-1...B1B0 1/2550 A. Yaicharoen

1-bit Comparator 1/2550 A. Yaicharoen

Other MSI Circuits Parity generators/checkers Code converters BCD-to-binary converter Binary-to-BCD converter Priority encoders Decimal-to-BCD encoder Octal-to-binary Encoder Decoder/drivers for display devices BCD-to-decimal decoder/driver BCD-to-7-segment decoder/driver 1/2550 A. Yaicharoen