CONTROL STATEMENTS IF-ELSE, SWITCH- CASE Introduction to Computer Science I - COMP 1005, 1405 Instructor : Behnam Hajian

Slides:



Advertisements
Similar presentations
L5:CSC © Dr. Basheer M. Nasef Lecture #5 By Dr. Basheer M. Nasef.
Advertisements

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 4: Selections.
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved. 1.
Control Structures Corresponds with Chapters 3 and 4.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All rights reserved Chapter 3 Control Statements.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 3 Control Statements.
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 5 Control Statements.
Introduction to Java Programming, 4E Y. Daniel Liang.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 3 Control Statements.
Chapter 3 Selections Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All rights reserved Control Statements.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Section 3 - Selection and Repetition Constructs. Control Structures 1. Sequence 2. Selection 3. Repetition.
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
Programming Fundamentals I (COSC- 1336), Lecture 3 (prepared after Chapter 3 of Liang’s 2011 textbook) Stefan Andrei 10/9/20151 COSC-1336, Lecture 3.
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
INF120 Basics in JAVA Programming AUBG, COS dept Lecture 05 Title: Decision/Selection Control Structures Reference: MalikFarrell, chap 1, Liang Ch 3.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
© Copyright 2013 by Pearson Education, Inc. All Rights Reserved.1 Chapter 3 Selections.
Liang, Introduction to Java Programming, Fifth Edition, (c) 2005 Pearson Education, Inc. All rights reserved Chapter 5 Control Statements.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Chapter 3 Selections Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved
Information  HW1 now available  Group Project (Find your group members)  Start thinking about group projects.
Flow of Control Part 1: Selection
Making Decisions Chapter 5.  Thus far we have created classes and performed basic mathematical operations  Consider our ComputeArea.java program to.
Introduction to Control Statements JavaScript – Part 3 George Mason University June 3, 2010.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved. CHAPTER 3: SELECTIONS 1.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 3 Selections.
©TheMcGraw-Hill Companies, Inc. Permission required for reproduction or display. Selection Statements Selection Switch Conditional.
Liang, Introduction to C++ Programming, (c) 2007 Pearson Education, Inc. All rights reserved X1 Chapter 3 Control Statements.
Liang, Introduction to C++ Programming, (c) 2007 Pearson Education, Inc. All rights reserved X1 Chapter 3 Control Statements.
1 Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
Chapter 3 Selection Statements §3.1 The Boolean Type and Operators §3.2 The if-else Statements §3.3 Case Studies §3.4 Logical Operators §3.5 Switch Statements.
1 Chapter 5 Control Statements. 2 Objectives F To understand the flow of control in selection and loop statements. F To use Boolean expressions to control.
Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved.1 Chapter 3 Selections.
Introduction to Control Statements IT108 George Mason University.
John Hurley Spring 2011 Cal State LA CS 201 Lecture 5:
Lecture 4: Introduction to Control Flow Statements and Reading User Input Michael Hsu CSULA.
Chapter 3 Selections Liang, Introduction to Programming with C++, Second Edition, (c) 2010 Pearson Education, Inc. All rights reserved
Lecture 3 Selection Statements
Chapter 3 Selection Statements
Chapter 4 Selections © Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
Group Project (Find your group members)
Chapter 3 Selections Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved.
Chapter 3 Selections Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved.
Chapter 3 Selections Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.
Chapter 3 Control Statements
Chapter 3 Selections Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved
Selections Java.
CHAPTER 4 Selection CSEG1003 Introduction to Computing
Chapter 3 Selections ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH Introduction to Java Programming, Liang (Pearson 2014)
Chapter 3 Control Statements Lecturer: Mrs Rohani Hassan
Chapter 3 Selections Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved
Chapter 5 Control Statements
Chapter 3 Selections Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1.
Chapter 3 Selections Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved
Chapter 3 Control Statements
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.
Chapter 3 Selections Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved
Chapter 3 Selections Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All rights reserved.
Chapter 3 Selections Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved. 1.
Presentation transcript:

CONTROL STATEMENTS IF-ELSE, SWITCH- CASE Introduction to Computer Science I - COMP 1005, 1405 Instructor : Behnam Hajian

Control Statement

Outline F To declare boolean type and write Boolean expressions. F To distinguish between conditional and unconditional && and || operators. F To use Boolean expressions to control selection statements. F To implement selection control using if and nested if statements. F To implement selection control using switch statements. F To write expressions using the conditional operator. F To display formatted output using the System.out.printf method and to format strings using the String.format method. F To know the rules governing operand evaluation order, operator precedence, and operator associativity

The boolean Type and Operators Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: true or false. boolean b = (1 > 2);

Comparison Operators Operator Name < less than <= less than or equal to > greater than >= greater than or equal to == equal to != not equal to

Logical Operator

Boolean Operators Operator Name ! not && and || or ^ exclusive or

Truth Table for Operator !

Truth Table for Operator &&

Truth Table for Operator ||

Truth Table for Operator ^ Exclusive OR (XOR)

Examples System.out.println("Is " + num + " divisible by 2 and 3? " + ((num % 2 == 0) && (num % 3 == 0))); System.out.println("Is " + num + " divisible by 2 or 3? " + ((num % 2 == 0) || (num % 3 == 0))); System.out.println("Is " + num + " divisible by 2 or 3, but not both? " + ((num % 2 == 0) ^ (num % 3 == 0)));

Example: Determining Leap Year? This program first prompts the user to enter a year as an int value and checks if it is a leap year. A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400. (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)

Selection Statements  if Statements  switch Statements F Conditional Operators

If-else Control Statement

Simple if Statements if (booleanExpression) { statement(s); } if (radius >= 0) { area = radius * radius * PI; System.out.println("The area" + " for the circle of radius " + radius + " is " + area); }

Note

Caution Adding a semicolon at the end of an if clause is a common mistake. if (radius >= 0); { area = radius*radius*PI; System.out.println( "The area for the circle of radius " + radius + " is " + area); } This mistake is hard to find, because it is not a compilation error or a runtime error, it is a logic error. This error often occurs when you use the next-line block style. Wrong

The if...else Statement if (booleanExpression) { statement(s)-for-the-true-case; } else { statement(s)-for-the-false-case; }

if...else Example if (radius >= 0) { area = radius * radius * ; System.out.println("The area for the “ + “circle of radius " + radius + " is " + area); } else { System.out.println("Negative input"); }

Multiple Alternative if Statements

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0The condition is false

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0The condition is false

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0The condition is false

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0The condition is true

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0grade is C

Trace if-else statement if (score >= 90.0) grade = 'A'; else if (score >= 80.0) grade = 'B'; else if (score >= 70.0) grade = 'C'; else if (score >= 60.0) grade = 'D'; else grade = 'F'; Suppose score is 70.0Exit the if statement

Note The else clause matches the most recent if clause in the same block.

Note, cont. Nothing is printed from the preceding statement. To force the else clause to match the first if clause, you must add a pair of braces: int i = 1; int j = 2; int k = 3; if (i > j) { if (i > k) System.out.println("A"); } else System.out.println("B"); This statement prints B.

TIP

CAUTION

Example: Computing Taxes The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2002 are shown in Table 3.1.

Example: Computing Taxes, cont. if (status == 0) { // Compute tax for single filers } else if (status == 1) { // Compute tax for married file jointly } else if (status == 2) { // Compute tax for married file separately } else if (status == 3) { // Compute tax for head of household } else { // Display wrong status }

Example: Guessing Birth Date The program can guess your birth date. Run to see how it works.

switch Statements switch (status) { case 0: compute taxes for single filers; break; case 1: compute taxes for married file jointly; break; case 2: compute taxes for married file separately; break; case 3: compute taxes for head of household; break; default: System.out.println("Errors: invalid status"); System.exit(0); }

switch Statement Flow Chart

switch Statement Rules switch (switch-expression) { case value1: statement(s)1; break; case value2: statement(s)2; break; … case valueN: statement(s)N; break; default: statement(s)-for-default; } The switch-expression must yield a value of char, byte, short, or int type and must always be enclosed in parentheses. The value1,..., and valueN must have the same data type as the value of the switch-expression. The resulting statements in the case statement are executed when the value in the case statement matches the value of the switch- expression. Note that value1,..., and valueN are constant expressions, meaning that they cannot contain variables in the expression, such as 1 + x.

switch Statement Rules The keyword break is optional, but it should be used at the end of each case in order to terminate the remainder of the switch statement. If the break statement is not present, the next case statement will be executed. switch (switch-expression) { case value1: statement(s)1; break; case value2: statement(s)2; break; … case valueN: statement(s)N; break; default: statement(s)-for-default; } The default case, which is optional, can be used to perform actions when none of the specified cases matches the switch-expression. The case statements are executed in sequential order, but the order of the cases (including the default case) does not matter. However, it is good programming style to follow the logical sequence of the cases and place the default case at the end.

Common errors

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } Suppose ch is 'a':

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } ch is 'a':

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } Execute this line

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } Execute this line

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } Execute this line

Trace switch statement switch (ch) { case 'a': System.out.println(ch); case 'b': System.out.println(ch); case 'c': System.out.println(ch); } Next statement; Execute next statement

Trace switch statement switch (ch) { case 'a': System.out.println(ch); break; case 'b': System.out.println(ch); break ; case 'c': System.out.println(ch); } Suppose ch is 'a':

Trace switch statement switch (ch) { case 'a': System.out.println(ch); break; case 'b': System.out.println(ch); break ; case 'c': System.out.println(ch); } ch is 'a':

Trace switch statement switch (ch) { case 'a': System.out.println(ch); break; case 'b': System.out.println(ch); break ; case 'c': System.out.println(ch); } Execute this line

Trace switch statement switch (ch) { case 'a': System.out.println(ch); break; case 'b': System.out.println(ch); break ; case 'c': System.out.println(ch); } Execute this line

Trace switch statement switch (ch) { case 'a': System.out.println(ch); break; case 'b': System.out.println(ch); break ; case 'c': System.out.println(ch); } Next statement; Execute next statement

Conditional Operator if (x > 0) y = 1 else y = -1; is equivalent to y = (x > 0) ? 1 : -1; (booleanExpression) ? expression1 : expression2 Ternary operator Binary operator Unary operator

Conditional Operator if (num % 2 == 0) System.out.println(num + “is even”); else System.out.println(num + “is odd”); System.out.println( (num % 2 == 0)? num + “is even” : num + “is odd”);

Conditional Operator, cont. (booleanExp) ? exp1 : exp2

Operator Precedence How to evaluate * 4 > 5 * (4 + 3) – 1?

Operator Precedence  Inside brackets (parenthesis)  var++, var--  +, - (Unary plus and minus), ++var, --var  (type) Casting  ! (Not)  *, /, % (Multiplication, division, and remainder)  +, - (Binary addition and subtraction) , >= (Comparison)  ==, !=; (Equality)  & (Unconditional AND)  ^ (Exclusive OR)  | (Unconditional OR)  && (Conditional AND) Short-circuit AND  || (Conditional OR) Short-circuit OR  =, +=, -=, *=, /=, %= (Assignment operator)

Operator Precedence and Associativity The expression in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression in the inner parentheses is executed first.) When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule. If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left-associative.

Operator Associativity When two operators with the same precedence are evaluated, the associativity of the operators determines the order of evaluation. All binary operators except assignment operators are left-associative. a – b + c – d is equivalent to ((a – b) + c) – d Assignment operators are right-associative. Therefore, the expression a = b += c = 5 is equivalent to a = (b += (c = 5))

Example Applying the operator precedence and associativity rule, the expression * 4 > 5 * (4 + 3) - 1 is evaluated as follows:

Operand Evaluation Order The precedence and associativity rules specify the order of the operators, but do not specify the order in which the operands of a binary operator are evaluated. Operands are evaluated from left to right in Java. The left-hand operand of a binary operator is evaluated before any part of the right-hand operand is evaluated.

Operand Evaluation Order, cont. If no operands have side effects that change the value of a variable, the order of operand evaluation is irrelevant. Interesting cases arise when operands do have a side effect. For example, x becomes 1 in the following code, because a is evaluated to 0 before ++a is evaluated to 1. int a = 0; int x = a + (++a); But x becomes 2 in the following code, because ++a is evaluated to 1, then a is evaluated to 1. int a = 0; int x = ++a + a;

Rule of Evaluating an Expression Rule 1: Evaluate whatever subexpressions you can possibly evaluate from left to right. Rule 2: The operators are applied according to their precedence. Rule 3: The associativity rule applies for two operators next to each other with the same precedence.

Rule of Evaluating an Expression Applying the rule, the expression * 4 > 5 * (4 + 3) - 1 is evaluated as follows:

Mathematic library

QUESTIONS?