COE 202: Digital Logic Design Combinational Circuits Part 3 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Ahmad Almulhem, KFUPM.

Slides:



Advertisements
Similar presentations
1 The 2-to-4 decoder is a block which decodes the 2-bit binary inputs and produces four output All but one outputs are zero One output corresponding to.
Advertisements

Digital Circuits. Review – Getting the truth table The first step in designing a digital circuit usually is to get the truth table. That is, for every.
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
5.5 Encoders A encoder is a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs, where the input and output codes.
Give qualifications of instructors: DAP
CDA 3100 Recitation Week 10.
Logic Circuits Design presented by Amr Al-Awamry
Princess Sumaya University
Overview Part 2 – Combinational Logic Functions and functional blocks
Functions and Functional Blocks
COE 202: Digital Logic Design Combinational Circuits Part 1
Henry Hexmoor1 C hapter 4 Henry Hexmoor-- SIUC Rudimentary Logic functions: Value fixing Transferring Inverting.
COE 202: Digital Logic Design Sequential Circuits Part 1 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM.
Overview Part 2 – Combinational Logic
CPEN Digital System Design
COE 202: Digital Logic Design Combinational Circuits Part 3 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM.
CS 151 Digital Systems Design Lecture 17 Encoders and Decoders
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 3 – Combinational Logic Design Part 2 –
COE 202: Digital Logic Design Combinational Circuits Part 1
DIGITAL SYSTEMS TCE OTHER COMBINATIONAL LOGIC CIRCUITS DECODERS ENCODERS.
COE 202: Digital Logic Design Combinational Circuits Part 4
Combinational Logic Design
Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active in View Show mode) Terms of Use Logic and Computer Design.
Combinational Logic Chapter 4.
9/15/09 - L15 Decoders, Multiplexers Copyright Joanne DeGroat, ECE, OSU1 Decoders and Multiplexers.
Outline Decoder Encoder Mux. Decoder Accepts a value and decodes it Output corresponds to value of n inputs Consists of: Inputs (n) Outputs (2 n, numbered.
CS 151: Digital Design Chapter 3 3-8: Encoding. CS 151 Encoding Encoding - the opposite of decoding - the conversion of a maximum of 2 n input code to.
Combinational Logic Design
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 3 – Combinational Logic Design Part 2 –
Decoders.
Combinational Circuit – Arithmetic Circuit
1 Digital Logic Design Week 7 Decoders, encoders and multiplexers.
Ahmad Almulhem, KFUPM 2010 COE 202: Digital Logic Design Number Systems Part 4 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:
CS2100 Computer Organisation MSI Components (AY2015/6 Semester 1)
Digital Logic Design Review Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM 2010.
COE 202: Digital Logic Design Combinational Circuits Part 4
Ahmad Almulhem, KFUPM 2009 COE 202: Digital Logic Design Combinational Logic Part 2 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:
9/15/09 - L15 Decoders, Multiplexers Copyright Joanne DeGroat, ECE, OSU1 Decoders and Multiplexer Circuits.
Combinational Design, Part 3: Functional Blocks
Logical Circuit Design Week 6,7: Logic Design of Combinational Circuits Mentor Hamiti, MSc Office ,
Multiplexers and Demultiplexers, and Encoders and Decoders
COE 202: Digital Logic Design Combinational Circuits Part 3
CS221: Digital Logic Design Combinational Circuits
CS 151  What does the full truth table look like? InputsOutputs D3D3 D2D2 D1D1 D0D0 A1A1 A0A0 V 0000XX
Decoders, Encoders, Multiplexers
CS151 Introduction to Digital Design
CO UNIT-I. 2 Multiplexers: A multiplexer selects information from an input line and directs the information to an output line A typical multiplexer has.
Chapter Four Combinational Logic 1. Discrete quantities of information are represented in digital systems by binary codes. A binary code of n bits is.
1 CS 151: Digital Design Chapter 3: Combinational Logic Design 3-1Design Procedure CS 151: Digital Design.
1 Fundamentals of Computer Science Combinational Circuits.
Ahmad Almulhem, KFUPM 2009 COE 202: Digital Logic Design Combinational Logic Part 1 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:
Digital Systems Section 11 Decoders and Encoders.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
Multiplexors Decoders  Decoders are used for forming separate signals for different combination of input signals.  The multiplexer circuit is a digital.
Chapter 3: Combinational Functions and Circuits 3-5 to 3-7: Decoders
Module 11.  In Module 9, we have been introduced to the concept of combinational logic circuits through the examples of binary adders.  Meanwhile, in.
Digital System Design Multiplexers and Demultiplexers, and Encoders and Decoders.
1 DLD Lecture 16 More Multiplexers, Encoders and Decoders.
Decoders Zhijian John Wang. What are they? Overview of a decoder A device that reverses the process of an encoder Convert information from one format.
C OMBINATIONAL L OGIC D ESIGN 1 Eng.Maha AlGubali.
Decoders A decoder is a logic circuit that detects the presence of a specific combination of bits at its input. Two simple decoders that detect the presence.
CS221: Digital Logic Design Combinational Circuits 3
Combinational Logic Circuits
Reference: Chapter 3 Moris Mano 4th Edition
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
COE 202: Digital Logic Design Sequential Circuits Part 4
COE 202: Digital Logic Design Combinational Circuits Part 3
Multiplexers Anindya IE CSE.
Presentation transcript:

COE 202: Digital Logic Design Combinational Circuits Part 3 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM 2009

Encoder Encoding - the opposite of decoding - the conversion of an m- bit input code to a n-bit output code with n  m  2 n such that each valid code word produces a unique output code An encoder is a circuit that changes a set of signals into a code. An encoder has 2 n (or fewer) input lines and n output lines which generate the binary code corresponding to the active input Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears n outputs 2 n inputs 2 n -to-n Encoder Ahmad Almulhem, KFUPM 2009

8-to-3 Encoder Description: 2 3 = 8 inputs, 3 outputs one input =1, others = 0’s Each input generate unique binary code Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2

8-to-3 Encoder (truth table) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A

8-to-3 Encoder (truth table) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A

8-to-3 Encoder (truth table) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A

8-to-3 Encoder (truth table) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A

8-to-3 Encoder (truth table) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A

8-to-3 Encoder (equations) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A Note: This truth table is not complete! Why? Output equations: A 0 = ? A 1 = ? A 2 = ?

8-to-3 Encoder (equations) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A Output equations: A 0 = D 1 + D 3 + D 5 + D 7 A 1 = ? A 2 = ?

8-to-3 Encoder (equations) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A Output equations: A 0 = D 1 + D 3 + D 5 + D 7 A 1 = D 2 + D 3 + D 6 + D 7 A 2 = ?

8-to-3 Encoder (equations) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A Output equations: A 0 = D 1 + D 3 + D 5 + D 7 A 1 = D 2 + D 3 + D 6 + D 7 A 2 = D 4 + D 5 + D 6 + D 7

8-to-3 Encoder (circuit) Ahmad Almulhem, KFUPM to-3 Encoder D0D1D2D3D4D5D6D7D0D1D2D3D4D5D6D7 A0A1A2A0A1A2 Output equations: A 0 = D 1 + D 3 + D 5 + D 7 A 1 = D 2 + D 3 + D 6 + D 7 A 2 = D 4 + D 5 + D 6 + D 7 A0A1A2A0A1A2 D1D3D5D7D1D3D5D7 D2D3D6D7D2D3D6D7 D4D5D6D7D4D5D6D7

8-to-3 Encoder (Limitations!) Ahmad Almulhem, KFUPM 2009 Output equations: A 0 = D 1 + D 3 + D 5 + D 7 A 1 = D 2 + D 3 + D 6 + D 7 A 2 = D 4 + D 5 + D 6 + D 7 inputsoutputs D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0 A2A2 A1A1 A0A Two Limitations: 1. Two or more inputs = 1 Example: D 3 = D 6 = 1 A 2 A 1 A 0 = All inputs = 0 Same as D 0 =1

Priority Encoder It addresses the previous two limitations: 1.Two or more inputs = 1 It considers the bit with highest priority 2.All inputs = 0 Add another output v to indicate this combination Ahmad Almulhem, KFUPM 2009

4-to-2 Priority Encoder Ahmad Almulhem, KFUPM 2009 Description: 2 2 = 4 inputs, outputs Two or more 1’s take highest priority

4-to-2 Priority Encoder Ahmad Almulhem, KFUPM 2009 inputsoutputs D3D3 D2D2 D1D1 D0D0 A1A1 A0A0 V 0000XX X011 01XX101 1XXX111 Description: 2 2 = 4 inputs, outputs If we have two or more 1’s, take the highest priority This is a condensed truth table! It has only 5 rows instead of 16! Row 3 = 2 combinations Row 4 = 4 combinations Row 5 = 8 combinations

4-to-2 Priority Encoder Ahmad Almulhem, KFUPM 2009 inputsoutputs D3D3 D2D2 D1D1 D0D0 A1A1 A0A0 V 0000XX X011 01XX101 1XXX111 Description: 2 2 = 4 inputs, outputs Two or more 1’s take highest priority Equations: A 0 = D 3 + D 1 D 2 ’ A 1 = D 2 + D 3 V= D 0 + D 1 + D 2 + D 3

4-to-2 Priority Encoder Ahmad Almulhem, KFUPM 2009 inputsoutputs D3D3 D2D2 D1D1 D0D0 A1A1 A0A0 V 0000XX X011 01XX101 1XXX111 Description: 2 2 = 4 inputs, outputs Two or more 1’s take highest priority Equations: A 0 = D 3 + D 1 D 2 ’ A 1 = D 2 + D 3 V= D 0 + D 1 + D 2 + D 3