C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:

Slides:



Advertisements
Similar presentations
First observation of electroluminescence in liquid xenon within THGEM holes: towards novel Liquid Hole-Multipliers L. Arazi, A. Breskin, A. Coimbra*,
Advertisements

Parallel Ionization Multiplier (PIM) : a multi-stage device using micromeshes for tracking particles MPGD’s Workshop at NIKHEF April 16th2008 April 16th.
CBM Jammu University Feb , 2008 by Arun Prakash CBM Banaras Hindu University Arun Prakash DoP, BHU (For Banaras Group) Out.
Gas Detector Developments Jin Li. Liquid Xenon case Liquid Xenon can be considered as a gaseous xenon of 520 atm. K.Masuda, S. Takasu, T.Doke et al. (Doke.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
1 VCI, Werner Riegler RPCs and Wire Chambers for the LHCb Muon System  Overview  Principles  Performance Comparison: Timing, Efficiency,
A. BreskinTIPP09 Tsukuba VISIBLE-SENSITIVE GAS-PMs A. Breskin, A. Lyashenko, R. Chechik Weizmann Institute of Science, Rehovot, Israel J.M.F. dos Santos,
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
A. Lyashenko Alkali-antimonide PCs for GPMPC workshop, Chicago 09 Alkali-antimonide Photocathodes for Gas- Avalanche Photomultipliers Recent review on.
10 Picosecond Timing Workshop 28 April PLANACON MCP-PMT for use in Ultra-High Speed Applications.
The work of GEM foil at CIAE
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
RICH04 Mexico A. Breskin Ion-induced effects in GEM & GEM/MHSP- gaseous photomultipliers for the UV & visible spectral range
Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors L. Arazi [1], A. E. C. Coimbra [1,2], E. Erdal [1], I. Israelashvili.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
Photodetection EDIT EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Micro Channel plate PMT (MCP-PMT) Similar to ordinary.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
DEVELOPMENT OF A THGEM-BASED PHOTON DETECTOR FOR CHERENKOV IMAGING APPLICATIONS Silvia Dalla Torre INFN - Trieste On behalf of an Alessandria-CERN-Freiburg-Liberec-Prague-Torino-TriesteCollaboration.
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
1 IBF in aligned, misaligned and FLOWER THGEMs The IBF problem Standard THGEM configuration COBRA and extra electrode Misaligned holes FLOWER THGEM solution.
15th RD51 Collaboration Meeting 18 – 20 March 2015 CERN On the way to sub-100ps timing with Micromegas T. Papaevangelou IRFU / CEA Saclay.
1 Fulvio TESSAROTTO GDD meeting, CERN, 01/10/2008 Trieste THGEM news First indications from electrostatic simulation exercise Goals of the simulation Parameters.
R & D at BHU B.K. Singh (On behalf of HEP Group).
1/18 01/26/2007MPGD Workshop in Saga (Yorito Yamaguchi, CNS, Univ. of Tokyo) 東大 CNS における GEM の基本動 作特性の研究 Measurement of basic properties of GEM at CNS,
Atsushi Aoza ( saga University ) A Simulation Study of GEM gating at ILC-TPC A.Ishikawa, A.Sugiyama, H.Fujishima, K.Kadomatsu(Saga U.) K.Fujii,M.Kobayashi,
Itzhak Tserruya, July 7,  Towards HBD Proposal  Ongoing activities and plans for the next two months Itzhak Tserruya HBD meeting at BNL, September.
Rachel Chechik Weizmann Institute TIIPP09 Tsukuba March 2009 The THGEM: a THick robust Gaseous Electron Multiplier for radiation detectors A.Breskin, M.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Itzhak Tserruya, BNL, May13, HBD R&D Update: Demonstration of Hadron Blindness A. Kozlov, I. Ravinovich, L. Shekhtman and I. Tserruya Weizmann Institute,
Study of TGEMs and RETGEMs for the possible ALICE upgrade By Himank Anand and Isha Shukla (CERN summer students) Supervisor :Vladimir Peskov.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
TCPD test measurement 1 TCPD (TGEM CCC Photon Detector) test measurement ELTE, MTA KFKI RMKI, REGARD Group (Budapest, Hungary): Levente Kovács G. Hamar,
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors Craig Woody Brookhaven National Lab B.Azmoun 1, A Caccavano 1, Z.Citron 2,
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
1 HBD R&D: Update Itzhak Tserruya (for A. Kozlov, I. Ravinovich and L. Shekhtman) Weizmann Institute, Rehovot DC meeting Feb. 14, 2003.
Electron Transmission Measurement of GEM Gate Hirotoshi KUROIWA (Saga Univ.) Collaboration with KEK, TUAT, Kogakuin U, Kinki U, Saga U Introduction Motivation.
Construction and Characterization of a GEM G.Bencivenni, LNF-INFN The lesson is divided in two main parts: 1 - construction of a GEM detector (Marco Pistilli)
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Single GEM Measurement Matteo Alfonsi,Gabriele Croci and Bat-El Pinchasik June 25 th 2008 GDD Meeting 1.
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Recent THGEM investigations A. Breskin, V. Peskov, J. Miyamoto, M. Cortesi, S. Cohen, R. Chechik Weizmann Institute RD51 Paris Oct 08 - Gain: UV vs. X-rays.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Small, fast, low-pressure gas detector E. Norbeck, J. E. Olson, and Y. Onel University of Iowa For DNP04 at Chicago October 2004.
Recent test results of TGEM-Prototypes in INR, Moscow V.I.Razin, А.B.Kurepin, B.M.Ovchinnikov, A.I.Reshetin, E.A.Usenko, S.N.Filippov, D.A.Finogeev Institute.
THGEM Marco Cortesi Weizmann Institute of Science PANIC08 Recent Advances in THGEM Detectors M. Cortesi, A. Breskin, R. Chechik, R. Alon, J. Miyamoto Weizmann.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
R&D on Hadron Blind detector, recent results Issues addressed: - gain limits in CF 4 with heavily ionizing particles - operation.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
First results from tests of gaseous detectors assembled from resistive meshes P. Martinengo 1, E. Nappi 2, R. Oliveira 1, V. Peskov 1, F. Pietropaola 3,
Thick-GEM sampling element for DHCAL: First beam tests & more
Study of TGEMs and RETGEMs for the possible ALICE upgrade
Part-V Micropattern gaseous detectors
WG1 Task2 New structures, new designs, new geometries
THGEM: Introduction to discussion on UV-detector parameters for RICH
Development of Hard X-ray Detector with GEM
Numerical simulations on single mask conical GEMs
Ionization detectors ∆
THGEM report – january, 22nd 2009
PHOTON DETECTION AND LOCALIZATION WITH THE
Development of GEM at CNS
Production of a 3D-Printed THGEM Board
Presentation transcript:

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers: a simple solution for large area UV-RICH detectors R. Chechik, A. Breskin and C. Shalem Dept. of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 2 30 years of “Hole-multiplication” history: Breskin, Charpak NIM108(1973)427 discharge in glass capillaries Lum et al. IEEE NS27(1980)157, Del Guerra et al. NIMA257(1987)609 Avalanches in holes Bartol, Lemonnier et al. J.Phys.III France 6(1996)337 CAT Sakurai et al. NIMA374(1996)341, Peskov et al. NIMA433(1999)492 Glass Capillary Plates GEM Sauli NIMA386(1997)531 GEM Ostling, Peskov et al, IEEE NS50(2003)809 G-10 “Capillary plates ”

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 3 Expanding the standard GEM… 1-2 holes/mm 2 PCB tech. of etching + drilling Simple and robust  Sub-mm to mm spatial resolution V TGEM ~2KV (at atm. pressure) gain in single-TGEM, 10 7  10 7 gain in double-TGEM   Fast (few ns)  (<1 Torr10 4  Low pressure (<1 Torr) gain 10 4  50 holes/mm 2 Microlithography + etching High Spatial resolution (tens of microns) V GEM ~400V >10 3 >10 3 gain in single GEM gain in cascaded GEMs Fast (ns) Low pressure – gain~30 1mm TGEM Standard GEM Geometry: similar to “Optimized GEM” [Peskov] But: etched rim

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 4 Expanding the standard GEM ? What scales up? The GEM geometry and what does not? Electric fields Electron diffusion Electron transport Gain Timing properties Rate capability Ions transport -> it is a new device that has to be studied from scratch !

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 5 The TGEMs: A TGEM costs ~4$ /unit. With minimum order of 400$  ~120 TGEMs. >10 times cheaper than standard GEM from CERN.

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 6 Various TGEMs studied at WIS drilling Cu etching Manufactured by standard PCB techniques of precise drilling in G-10 (+ other materials) and Cu etching. Typical Atm.pressure geometry Low pressure geometry Hole diameter d=0.3mm Distance between holes a =0.7mm Thickness t =0.4mm Hole diameter d=1mm Distance between holes a =1.5mm Thickness t =1.6mm 0.1mm rim to prevent discharges Important for high gains! 0.1mm Cu G-10 3cm

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 7 Electric field & e - transport calculations: Maxwell / Garfield E~4 (KV/cm) E~25 (KV/cm) Operated at V TGEM ~2KV Field values on electrode surfaces Field value inside the holes Field direction->focusing into the holes Dependence on the hole parameters  multiplication Hole length

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 8 Operation principle E drift E TGEM E trans Garfield simulation of electron multiplication in Ar/CO 2 (70:30) Multiplication inside holes -> reduces secondary effects Each hole acts as an individual multiplier

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 9 TGEM as a Photon detector Considerations: 1.High field on the pc surface, to minimize back scattering. 2. Good e - focusing into the holes, to maximize effective QE. 3.Low sensitivity for ionizing background radiation. Solution: a reflective pc on top of the TGEM. Slightly reversed E drift (~50V/cm) good photoelectron collection! Low sensitivity to MIPS

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 10 For typical operation voltages: Surface field > 5kV/cm  Full photoelectron extraction High effective QE TGEM as a Photon detector (‘cont) TGEMs studied so far are more optically transparent than standard GEM. Cu: 40-50% area 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 11 Effective gain and effective QE effective gain:  measured gain in current mode is an effective gain: Effective gain = true gain in X efficiency to focus the holes the e - into the holes. effective QE  QE in the detector is an effective QE: Eff. QE = true QE X efficiency to X efficiency to of the pc extract the ph.e. detect the ph.e. i PC GEM Reflective pc i PC GEM Semitransparent pc

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 12 Gain Single-photon detection no photon feedback Rise time < 10ns 10ns Example: TGEM with reflective CsI photocathode (Similar results with semitransparent pc) Single-TGEM: Gain 10 5

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 13 Higher total gain ( ) >10 3 higher gain at same V TGEM Better stability Double-TGEM: Gain 5 mm E trans = 3kv/cm e-e- Important for double TGEM: high E trans Large transfer gap 10 7 Example: TGEM with a semitransparent CsI photocathode (similar results with reflective pc)

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 14 Problem: Requires high TGEM voltage. Damage due to sparks is fatal: after a spark the TGEM deteriorates continuously. (We suspect effects of etching to the SiO 2 fibers). Fatal spark damage was also observed in standard GEMs operating in CF 4, due to the high operating voltages. Solutions: Segment the TGEM Cascade several TGEMs. Test other materials: Kevlar, Teflon, etc. Operation in CF 4 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 15 Electron transfer efficiency  Electron transfer efficiency  TGEM with a reflective pc (E drift =0)  e affects energy resolution, detection efficiency, effective QE Compared to standard GEM, very high fields are reached at the TGEM surface already at low V TGEM. Good e - extraction in all gases. FfFf Transfer efficiency 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 16 Electron transfer efficiency  Electron transfer efficiency  TGEM with a semitransparent pc   is important also for double TGEM operation (more complex measurement) Double-sided pc Double normalization Single e - pulse counting as before Full efficiency already at low gains gains ! 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 17 Electron transfer efficiency  -cont’ Electron transfer efficiency  -cont’ TGEM with a semitransparent pc - dependence on E drift /V TGEM E TGEM /E drfit > 1 e - focused to hole E TGEM /E drfit < 1 e - collected on GEM top With typical TGEM operation voltage: full eff. up to E drift = 4kv/cm 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 18 Energy resolution: 6 keV x-rays FWHM=~20% E resolution similar to standard GEM 6 keV x-rays

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 19 Counting rate capability  Reflective CsI pc  UV photons (185nm) Total current limit 4*10 -7 [Amp/mm 2 ] 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 20 Ion back flow Ion back flow  Affects pc longevity and secondary effects TGEM with a semitransparent pc s.t. pc Start amplification IBF = i pc /i TGEM 12% With high V TGEM most of the ions are collected on the top of the TGEM. 0.4mm thick 0.3mm holes 0.7mm pitch

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 21 Ion back flow Affects pc longevity and secondary effects TGEM with a reflective pc Reflective pc IBF = i pc /i TGEM With a reflective photocathode, most of the ions are collected on the top of the TGEM (like in a GEM).

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 22 Summary 1.G-10 TGEMs tested with several gases. 2.Gains: 10 5 with a single TGEM; 10 7 with cascaded double TGEM 3.Fast signals: r.t. <10 ns. 4.The e - transfer efficiency (into the holes) is well understood. 5.Counting rate capability: ~ 10 6 avalnches/sec x mm gain 4x Ion backflow: study in course 7.In TPC-like conditions: IBF with a single TGEM is 12%. In GPM/reflective pc: IBF with a single TGEM is 98%. A cascade + other “tricks” (see GEM/MHSP) should reduce IBF. 8. TGEMs of different materials (e.g. Kevlar, Teflon…) for CF 4 ?. 9. Will study TGEM of lower optical transparency (higher eff. QE)

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 23 The end

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 24 TGEM: Low pressure operation Single TGEM 10 Torr Isobutane Gain~10 5 ; Rise time~5ns  low pressure isobutane  semi-transparent CsI photocathode

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 25 TGEM: Low pressure operation  low pressure isobutane  semi-transparent CsI photocathode

C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 26 Electron transfer efficiency Electron transfer efficiency the efficiency to focus an electron into the TGEM Pulse counting measurement: A way to separate the true gain from the effective gain. Based on single e - pulses same pc, lamp, gain and electronics, different e - path. Comparing counting rate provides the fraction of single e events reaching TGEM bottom. (1) normalization (2) efficiency measurment Example: ref pc