Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.

Slides:



Advertisements
Similar presentations
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Advertisements

Eric Prebys, FNAL.  We have focused largely on a kinematics based approach to beam dynamics.  Most people find it more intuitive, at least when first.
Sect. 8.2: Cyclic Coordinates & Conservation Theorems
Simulating the Energy Spectrum of Quantum Dots J. Planelles.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton The tensor nature of susceptibility.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Quantum electrodynamics.
Transverse force on a magnetic vortex Lara Thompson PhD student of P.C.E. Stamp University of British Columbia July 31, 2006.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Guillermina Ramirez San Juan
Hofstadter’s Butterfly in the strongly interacting regime
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Teleportation. 2 bits Teleportation BELL MEASUREMENT.
Modeling of Energy States of Carriers in Quantum Dots
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Theory of Intersubband Antipolaritons Mauro F
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
Physics 311 Classical Mechanics Welcome! Syllabus. Discussion of Classical Mechanics. Topics to be Covered. The Role of Classical Mechanics in Physics.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
The motion of the classical and quntum partcles in the extended Lobachevsky space Yu. Kurochkin, V.S. Otchik, E. Ovseyuk, Dz. Shoukovy.
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
Specific Heat of Solids Quantum Size Effect on the Specific Heat Electrical and Thermal Conductivities of Solids Thermoelectricity Classical Size Effect.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Ch 9 pages Lecture 22 – Harmonic oscillator.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Absorption Spectra of Nano-particles
Wednesday, Feb. 1, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #5 Wednesday, Feb. 1, 2012 Dr. Jaehoon Yu Chapter 22.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 18 A Quantum Mechanical Model for the Vibration and Rotation of Molecules.
Chapter 2 Properties on the Nanoscale
“Significance of Electromagnetic Potentials in the Quantum Theory”
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Flux Capacitor (Schematic)
Constant magnetic field LL2 section 43. Electrons in atoms and circuits all perform finite motion. This creates magnetic fields that are constant when.
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
Topological Insulators
Statistical physics in deformed spaces with minimal length Taras Fityo Department for Theoretical Physics, National University of Lviv.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
ELECTROMAGNETIC PARTICLE: MASS, SPIN, CHARGE, AND MAGNETIC MOMENT Alexander A. Chernitskii.
Model for B Site Ordering in PMN Eric Cockayne Benjamin P. Burton Material Measurement Laboratory, NIST, Gaithersburg.
Physics 111 Lecture Summaries (Serway 8 th Edition): Lecture 1Chapter 1&3Measurement & Vectors Lecture 2 Chapter 2Motion in 1 Dimension (Kinematics) Lecture.
Topological physics with a BEC: geometric pumping and edge states Hsin-I Lu with Max Schemmer, Benjamin K. Stuhl, Lauren M. Aycock, Dina Genkina, and Ian.
Flat Band Nanostructures Vito Scarola
Solid state physics is the study of how atoms arrange themselves into solids and what properties these solids have. Calculate the macroscopic properties.
1 August 27, 2012 Tailoring Light-Matter Interaction in Nanophotonic Environments Petru Tighineanu Quantum Photonics group.
Relativistic Quantum Mechanics
Department of Electronics
Classical Mechanics Lagrangian Mechanics.
Schrödinger Representation – Schrödinger Equation
Lecture 3 The Schrödinger equation
Qian Niu 牛谦 University of Texas at Austin 北京大学
Magnetic Field: Classical Mechanics Aharonov-Bohm effect
dark matter Properties stable non-relativistic non-baryonic
Gauge structure and effective dynamics in semiconductor energy bands
Conductance of nanosystems with interaction
Quantum Two.
Physics 319 Classical Mechanics
FSU Physics Department
PHY 711 Classical Mechanics and Mathematical Methods
Case study: Aharonov-Bom effect
Accelerator Physics Synchrotron Radiation
Gauge theory and gravity
Physics 319 Classical Mechanics
Linear Vector Space and Matrix Mechanics
Information Storage and Spintronics 18
Presentation transcript:

Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles

Newton’s Law Lagrange equation Conservative systems Classical Mechanics: an overview

No magnetic monopoles Time-independent field Velocity-dependent potentials

Define: Velocity-dependent potentials: cont.

kinematic momentum: canonical momentum: Hamiltonian:

Conservative systems: V(x,y,z) & L = T - V kinematic momentum: canonical momentum: Hamiltonian:

Gauge We may select  : ; Coulomb Gauge :

Hamiltonian (coulomb gauge) ;

Axial magnetic field B & coulomb gauge ; gauge

Hamiltonian: axial magnetic field B & coulomb gauge ; Cyclotron frequency ;

Electron in a magnetic field Landau levels No crossings Rosas et al. AJP 68 (2000) 835

Confined electron pierced by a magnetic field Spherical confinement, axial symmetry Competition: quadratic vs. linear term

Electron energy levels, nLM, R = 3 nm InAs NC Electron in a spherical QD pierced by a magnetic field Electron energy levels, nLM, R = 12 nm InAs NC Landau levels Electron energy levels, nLM, GaAs/InAs/GaAs QDQW AB crossings J. Planelles, J. Díaz, J. Climente and W. Jaskólski, PRB 65 (2002)

Electron in a QR pierced by a magnetic field Electron energy levels (n=1, M) (n=2,M), of a InAs QR Dimensions: r = 10, R=60, h=2 J. Planelles,W. Jaskólski, and I. Aliaga, PRB 65 (2001) AB crossings

Peierls/Berry phase R. Peierls, Z. Phys. 80 (1933) 763; M. Graf & P. Volg, PRB 51 (1995) 4940 M.V. Berry, Proc. R. Soc. A 392 (1984) 45. R.Resta, JPCM 12 (2000) R107; A phase in is introduced in the wf by the magnetic field: Choose:

Peierls/Berry phase cont Peierls subtitution: Hamiltonian substitution:

Aharonov-Bohm Effect Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485 Classical mechanics: equations of motion can always be expressed in term of field alone. Quantum mechanics: canonical formalism. Potentials cannot be eliminated. An electron can be influenced by the potentials even if no fields act upon it. Berry’s phase (gauge dependent) Gauge independent

Semiconductor Quantum Rings Litographic rings GaAs/AlGaAs A.Fuhrer et al., Nature 413 (2001) 822; M. Bayer et al., Phys. Rev. Lett. 90 (2003) J.M.García et al., Appl. Phys. Lett. 71 (1997) 2014 T. Raz et al., Appl. Phys. Lett 82 (2003) 1706 B.C. Lee, C.P. Lee, Nanotech. 15 (2004) 848 self-assembled rings InAs

Example 1: Quantum ring 1D

Electron in a potential vector but no magnetic field

Aharonov-Bohm Effect Periodic symmetry changes of the energy levels Energetic oscillations Persistent currents E Φ/ Φ 0

Some 2D calculations: off-centering

FIR absorption of one electron in QD and QR J. Planelles and J. I. Climente, Collect. Czech. Chem. Commun. 70 (2005) 605 arXiv: cond-mat/ ;

Fractional Aharonov-Bohm Effect 1 electron 2 electrons coulomb interaction J.I. Climente, J. Planelles and F. Rajadell,J. Phys. Condens. Matter 17 (2005) 1573

Optic Aharonov-Bohm effect The Aharonov-Bohm effect leads to changes in electron and hole symmetry at different B values: J. Climente, J. Planelles and W. Jaskólski, Phys. Rev. B 68 (2003) Observed in stacked type II QDs : Kuskovsky et al. Phys. Rev. B 76 (2007) ; Sellers et al PRL 100, (2008).

Translations and magneto-translations I Switching the magnetic field on: No translational symmetry Though, can we get Bloch functions? Simultaneous eigenfunctions: Bloch functions

Translations and magneto-translations II Commute …. but and we can get Bloch functions Commute …. if Physical meaning: Translation + Lorentz Strength compensation Two-fold periodicity: magnetic and spatial cells

Translations and magneto-translations III Two-fold periodicity: magnetic and spatial cells J.L. Movilla and J. Planelles, PRB 83 (2011)

Thanks for your attention!

SUMMARY

Magnetic field: summary No magnetic monopoles: vector potential No conservative field: velocity-dependent potential: Lagrangian: kinematic momentum Canonical momentum: Hamiltonian: Coulomb gauge: Hamiltonian operator:

Magnetic field: summary (cont.) axial symmetry Spatial confinement dominates at strong confinement (atomic scale) Relevant at soft confinement (nanoscale and bulk) Aharonov-Bhom oscillations in non- simple topologies

Magnetic field: summary (cont.) Magneto-translations and Super-lattices Fractal spectrum (Hofstadter butterfly) Periodicity and homogeneous magnetic field B-dependent (super)-lattice constant

MORE

Example 2: Flux outside only (QR 1D) A = 0 at the position of system B does not make any influence on it

Example 3: irregular 1D system x = distance along the circuit L= circuit length With magnetic flux: F  2  F (flux units)

Example 4: non homogeneous B, 1D system Only flux dependent