SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

Type II string effective action and UV behavior of maximal supergravities Jorge Russo U. Barcelona – ICREA Based on work in coll. with M.B. Green and P.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Perturbative Ultraviolet Calculations in Supergravity Tristan Dennen (NBIA) Based on work with: Bjerrum-Bohr, Monteiro, O’Connell Bern, Davies, Huang,
Amplitudes and Ultraviolet Behavior of Supergravity Z. Bern, J.J. Carrasco, LD, H. Johansson, R. Roiban [PRL 103, (2009)], 1006.???? Lance.
The quantum structure of the type II effective action and UV behavior of maximal supergravity Jorge Russo U. Barcelona – ICREA [Based on work in coll.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
1 Multi-loop scattering amplitudes in maximally supersymmetric gauge and gravity theories. Twistors, Strings and Scattering Amplitudes Durham August 24,
Is N=8 Supergravity Finite? Z. Bern, L.D., R. Roiban, hep-th/ Z. Bern, J.J. Carrasco, L.D., H. Johansson, D. Kosower, R. Roiban, hep-th/07mmnnn.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
Structure of Amplitudes in Gravity III Symmetries of Loop and Tree amplitudes, No- Triangle Property, Gravity amplitudes from String Theory Playing with.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Twistors and Perturbative Gravity Emil Bjerrum-Bohr UK Theory Institute 20/12/05 Steve Bidder Harald Ita Warren Perkins +Zvi Bern (UCLA) and Kasper Risager.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
1 Is a Point-Like Ultraviolet Finite Theory of Quantum Gravity Possible? Is a Point-Like Ultraviolet Finite Theory of Quantum Gravity Possible? Zurich,
1 Ultraviolet Properties of N = 8 Supergravity at Three Loops and Beyond Ultraviolet Properties of N = 8 Supergravity at Three Loops and Beyond Paris,
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
Amplitudes et périodes­ 3-7 December 2012 Niels Emil Jannik Bjerrum-Bohr Niels Bohr International Academy, Niels Bohr Institute Amplitude relations in.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
1 Harmony of Scattering Amplitudes: From Gauge Theory to N = 8 Supergravity Strings, June 26, 2009 Zvi Bern, UCLA Overview + results from papers with:
Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati , ,
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
On Recent Developments in N=8 Supergravity Renata Kallosh Renata Kallosh EU RTN Varna, September 15, 2008 Stanford university.
1 Superfiniteness of N = 8 Supergravity at Three Loops and Beyond Superfiniteness of N = 8 Supergravity at Three Loops and Beyond Julius Wess Memorial.
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Toward the Determination of Effective Action in Superstring Theory and M-Theory Yoshifumi Hyakutake (Osaka Univ.)
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
Could N=8 Supergravity be a finite theory of quantum gravity? Z. Bern, L.D., R. Roiban, PLB644:265 [hep-th/ ] Z. Bern, J.J. Carrasco, L.D., H. Johansson,
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Hidden Structures in Field Theory Amplitudes and their Applications 1 Niels Bohr Institute August 12, 2009 Zvi Bern, UCLA TexPoint fonts used in EMF. Read.
1 Harmony of Scattering Amplitudes: From QCD to Gravity Durham UK Christmas Meeting December 20, 2008 Zvi Bern, UCLA.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Henrik Johansson CERN August 14, 2014 Nordita workshop: Supersymmetric Field Theories Henrik Johansson CERN August 14, 2014 Nordita workshop: Supersymmetric.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Amplitudes from Scattering Equations and Q-cuts
Multi-Loop Amplitudes with Maximal Supersymmetry
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
Is N=8 Supergravity Finite?
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Presentation transcript:

SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr International Academy, Niels Bohr Institute Research collaborations with S. Badger, Z. Bern, D. Dunbar, H. Ita, W. Perkins and K. Risager, P. Vanhove, (hep-th/ , hep-th/ , [hep-th], [hep-th]) On the Structure of Amplitudes in N=8 Maximal Supergravity

2 Gravity Amplitudes Expand Einstein-Hilbert Lagrangian : Features: Infinitely many huge vertices! No manifest simplifications (Sannan) 45 terms + sym Simplifications from Spinor-Helicity Gravity:

3 Gravity Amplitudes Closed String Amplitude Left-moversRight-movers Sum over permutations Phase factor x x x x M...++= 1 2 1M s 12 s 1M s 123 Open amplitudes: Sum over different factorisations (Link to individual Feynman diagrams lost..) Sum gauge invariant Certain vertex relations possible (Bern and Grant) (Kawai-Lewellen-Tye) Not Left-Right symmetric

4 Gravity MHV amplitudes Can be generated from KLT via YM MHV amplitudes. (Berends-Giele-Kuijf) recursion formula Anti holomorphic Contributions – feature in gravity

5 Making KLT more symmetric.. Rewriting: KLT in a manifest Left – Right symmetric form possible (NEJBB, Damgaard, Vanhove) Monodromy invariance of KLT nessecary ® ’ ! 0

6 Monodromy relations for Yang-Mills amplitudes Monodromy related Real part : Imaginary part : (Kleiss – Kuijf) relations New relations (Bern, Carrasco, Johansson) (n-3)! functions in basis

7 Monodromy invariance for KLT

8 Gravity Trees (Britto, Cachazo, Feng, Witten, Bedford, Brandhuber,Spence, Travaglini; Cachazo, Svrtec; NEJBB, Dunbar, Ita; Ozeren, Stirling, Arkani-Hamed, Kaplan; Hall; Cheung, Arkani- Hamed, Cachazo, Kaplan) Tree properties only 3pt amplitudes needed Amplitudes in Yang-Mills, QED and gravity can all be generated from BCFW recursion Features: helicity independent scaling behaviour

Scaling behaviour 99 Yang-Mills Gravity QED ( h i,h j ) : (+,+), (-,-), (+,-) » 1/z ( h i,h j ) : (-,+) » z 3 ( h i,h j ) : (+,+), (-,-), (+,-) » 1/z 2 » (1/z) 2 ( h i,h j ) : (-,+) » z 6 » (z 3 ) 2 ( h i,h j ) : (+,-) » z (3-n) ( h i,h j ) : (-,+) » z (5-n) (n-pt graviton amplitudes) (n-pt 2 photon amplitudes) (n-pt gluon amplitudes) Amazingly good behaviour KLT??

10 General 1-loop amplitudes Vertices carry factors of loop momentum n-pt amplitude (Passarino-Veltman) reduction Collapse of a propagator p = 2n for gravity p=n for YM Propagators

11 Unitarity cuts Unitarity methods are building on the cut equation SingletNon-Singlet

12 No-Triangle Hypothesis History  True for 4pt n-point MHV 6pt NMHV (IR) 6pt Proof 7pt evidence n-pt proof (Bern,Dixon,Perelstein,Rozowsky) (Bern, NEJBB, Dunbar,Ita) (Green,Schwarz,Brink) Consequence: N=8 supergravity same one-loop structure as N=4 SYM (NEJBB, Dunbar,Ita, Perkins, Risager; Bern, Carrasco, Forde, Ita, Johansson) Direct evaluation of cuts (NEJBB, Vanhove; Arkani-Hamed, Cachazo, Kaplan)

13 No-Triangle Hypothesis by Cuts Attack different parts of amplitudes 1).. 2).. 3).. (1) Look at soft divergences (IR) ! 1m and 2m triangles (2)Explicit unitary cuts ! bubble and 3m triangles (3)Factorisation ! rational terms. (NEJBB, Dunbar,Ita, Perkins, Risager; Arkani-Hamed, Cachazo, Kaplan; Badger, NEJBB, Vanhove) Check that boxes gives the correct IR divergences In double cuts: would scale like » 1/z In double cuts: would scale like » z 0 and 1/z Scaling properties of (massive) cuts.

No-Triangle Hypothesis N=4 SUSY Yang-Mills N=8 SUGRA QED (and sQED) No-triangle property: YES Expected from power-counting and z-scaling properties No-triangle property: YES NOT expected from naïve power-counting (consistent with string based rules) No-triangle property: from 8pt NOT as expected from naive power-counting (consistent with string based rules)

15 No-triangle hypothesis String based formalism natural basis of integrals is Constraint from SUSY Gravity Amplitude takes the form

16 No-triangle hypothesis N=8 Maximal Supergravity (r = 2 (n – 4), s = 0) (r = 2 (n – 4) - s, s >0) Higher dimensional contributions – vanish by amplitude gauge invariance Proof of No-triangle hypothesis (NEJBB, Vanhove)

17 No-triangle hypothesis Generic gravity theories: Prediction N=4 SUGRA Prediction pure gravity N · 3 theories constructable from cuts

18 No-triangle for multiloops Two-particle cut might miss certain cancellations Three/N-particle cut Iterated two-particle cut No-triangle hypothesis 1-loop Consequences for powercounting arguments above one-loop.. Possible to obtain YM bound?? D < 6/L + 4 for gravity??? Explicitly possible to see extra cancellations! (Bern, Dixon, Perelstein, Rozowsky; Bern, Dixon, Roiban)

19 Two-Loop SYM/ Supergravity (Bern,Rozowsky,Yan) (Bern,Dixon,Dunbar,Perelstein,Rozowsky) Explicit at two loops : ‘No-triangle hypothesis’ holds at two-loops 4pt Two-loop 5pt would be interesting to know

Three and Four-Loop SYM/ Supergravity Three and Four -loop four-point amplitude of N=8 supergravity directly constructed via unitarity. Divergences in D dimensions at three and four loop: NO WORSE than N=4 super-Yang-Mills theory. Amplitude UV finite in four dimensions. Confirms ‘no-triangle hypothesis’ for three and four loops. (Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)

Observations 21 Magical properties for amplitudes Monodromy relations for tree amplitudes in Yang-Mills and possibility of left-right symmetric KLT relation. SURPRISE: Gravity and QED: No-triangle property Unorderedness (+ gauge invariance) of amplitudes: Better behaviour (Gravity simpler than YM.) Helicity: NO ROLE for scaling behaviour of amplitudes Lower loop simplifications links to higher loop simplification (Link to KLT? -- Enough for finiteness of N=8 SUGRA??)